Journée 5 - Axe 2 - PEPR-PQ TLS

PQ SR-AKE : Subversion-resilient key-exchange in
the post-quantum world

Kevin DUVERGER, Pierre-Alain FOUQUE, Charlie JACOMME,
Guilhem NIOT, Cristina ONETE

Speaker — Kevin DUVERGER 10/ 07 / 2025

Contents :

[Subversions

Subversions ?

[Subversion-resilient AKE

[PQ SR-AKE

]<
=
<

Watchdogs

Reverse firewalls

Unauthenticated DH SR-AKE

Authenticated DH SR-AKE

Design choices

The protocol

Rerandomizable KEM

Security definitions

Introduction :

Cryptographic primitives and protocols

For humans

~~

Specifications

\Q

For machines

~~

Implementations

SN

Possible bugs

~~

-~

Difference between ideal world (specification) and real world (implementation)

¢ Biackbox

Introduction :

Subversion

Leak information

Intentional bugs

Undetectable

Usage exclusivity

attacks

Intelligence agencies

Force backdoors

Mass surveillance

Export Laws 1990’s

They are real !

v A v

Dual EC - 2013

XZ Utils — 2024

Introduction :

EUF-CMA - SIGN

IND-CPA ROR - KEM

(pk, sk) <* KeyGen(l’l)
(ct,Ky) <* Encaps(pk)
K <t x
b <% {0,1}

d « A(pk,ct, Kp)

(pk, sk) <* KeyGen(l’l)
(m*,a*) - c/qoSign(.)(pk)

A wins iff
Verify(pk,c*,m*) =1Am* ¢ L

A wins iff b =d

oSign(m)

o <% Sign(sk, m)
L« LU{m}
return o

Algorithms are idealized !

~~

Need to consider implementation vs specification in models !

Subversions — Attacks :

Subversions :

similar to steganography on cryptographic elements

Subversions — Attacks :

Starting point : subliminal channels, Gustavus J. Simmons, 1980’s

!

My Mo
Prisoner1 | |1 Warden) | Prisoner 2
‘ m'y ‘ my
Warden » Wants plaintext
> m || Sign(skg, m,r)
Prisoners * Want integrity

Attack : needs GetRandom(o, sk) —» r

Examples : Ong-Schnorr-Shamir / EIGamal

o = Sign(skg, m,m")

m,o m,o
Warden

A 4

Prisoner 2

\ 4

Prisoner 1

OK GetRandom(o, skp) » m”*

Subversions — Attacks :

Kleptography, Young and Yung, 1990’s

Subverted RSA KeyGen

p <% RandomPrimeGen(1%)

A

y

q <* Random

PrimeGen(1%)

A

y

n<—p><q

[
»

A

y

e < Enc(pkysa, p)

y

d « e 1 mod ¢(n)

NSA

Dec(e, skysa) = p

Output : (pk,sk) < ((n,e),d)

Breaks all security

Subversions — Attacks :

Algorithm Substitution Attacks (2014 — Now)

Input trigger
sk,m

T |

yes

no

Aa « sk o « Sign(sk,m)

Rejection sampling
sk,m

——

Sign

\ 4

\ 4

0; < DeterminsticSign(sk, m,1;)

S

i+ +

P example :

yes G++)

'A

Exclusivity : encrypt, Undetectability : for later

Subversions — Real world attacks :

Edward Snhowden — Dual EC DRBG - 2013

So < seed

Global parameters : P, (

» 51 < SoP.x —> S, « 5qP.x " S3 « S,P.x » S, « S3P.x
1 < 510.x Ty « S,0Q.x 73 <« S30.x Ty < S30.x
Whatif P =eQ ?
NSA (only one to know ¢)
T > " si0 " siP.x > > Si+1
2 possible y e X s5;Q =s;P

v

Subversions — Watchdogs :

Offline watchdogs = test before production — Blackbox testing

Deterministic watchdog (RSA encryption) Probabilistic (RSA keygen)
x; = (pk;,m;) < (PH x M)
X4 Xy Xy Watchdog
3} R 5 . seed, L sk
X; Specification > —— pkq,sky

\ 4

—— pk,, sk,

l l l l seed,

o) o Ck

Watchdog | o/ «f b4 seed,
€1

Implementation

pks, sk
Co c” ’ ’ x
I N {El—
X; Implementation
L _ - - _ seedy, . Lk, sk,

X1 X w X
“ ‘ 1

Subversions — Watchdogs :

sk,m

input,

|

alg(input;)

}

output,

Online watchdog = test always — Blackbox testing

t =
clean

4

Input trigger (signature)

M| = oo

\J

P(detect) = 0

Online watchdog

m « challenge® m

S T

Time bomb (can detect too)

Inputy_q
. 4 t=t"—-1
= alg(lnplwt*—l) clean
|
outputy_q J

Input;~

|

alg(input+)

!

output«

-

o « sk S

A\ 4

<

Verify(pks, o, m)

®

inputysyq
!
alg(inputy41)
|

output, ;4

Subversions — Watchdogs :

Blackbox testing NOT SUFFICIENT — Fine grain testing

Algo

Rejection sampling

input

Solution (KeyGen example)

Y Split-program model RandGen

dKeyGen

\ 4

outl-

« DeterminsticAlg(input, 1;)

Trusted amalgamation

Trusted o

S

KeyGen = dKeyGen o RandGen = dKeyGen(RandGen)

Undetectable for any blackbox test

[+ +
no
Protected KeyGen (double splitting)
yes
l RG RG4 RandExtract dKeyGen
out KeyGen() = dKeyGen(RandExtract(RGy(), RG,()))

]

Subversions — Reverse firewalls :

Watchdogs : limits + not adapted to protocols — reverse firewalls

2014 - lllya Mironov, Noah-Stephens Davidowitz

Firewall

Alice (safe)J

x

o

®

Reverse firewall

Alice

bad m

%

cleanm’

Stackable RFs : > 1 good RF — clean output

x

RF 1

RF 2

0)
Alice | -Radm— |

bad m®

| bad m(z): .

2

A

RF i

bad m(¢—1

clean m®

®

v

4

" A

x

RF n

clean
m(n_l)

| cleanm’

4

4

Subversions — Reverse firewalls :

RF — Example (+ EIGamal instanciation)

ct <* Enc(pk, m)

Alice

Bob

(pk, sk) «* KeyGen(1%)

y 3

ct

RF-Alice

pk

pk

A

A

ct

v

RandCT(ct)

v

m « Dec(sk, ct)

RF-Bob

pk

y

RandPK(pk)
ct

»
»

CorrCT(ct)

KeyGen(1%) : (x, g%)

Enc(pk,m) : (g0, m X pk™)

RandCT(ct) : (g™ X cty, pk™ X cty) RandPK(pk) : pk™

Dec(sk, ct) : cty/ct3k
CorrCT(ct) : (ct 2, cty)

Subversions — Reverse firewalls :

RF — Properties

m : Honest, m : Malicious,

: Subverted

Alice

RF-A

Functionality maintaining

Bob

g

X

2

Still correct ?

RF not trustworthy

Alice

RF-A

g

X

Bob
-

Security broken ?

Security preserving

RF-A

g

X

Bob
)

Still security for Alice ?

0.5 Imlem
0.5 Spec

Exfiltration-resilience

RF-A

X

Bob
)

Can A distinguish ?

Subversion-resilient AKE — Example 1 :

2015 — Secure Transmission with Reverse Firewalls

To protect : unauthenticated DH

Alice

Bob

\ 4

y 3

+ Authentication

\ 4

Unique signature + sign other thing

+ Message exchange

\ 4

Unique symmetric encryption

Studied in other solution

Subversion-resilient AKE — Example 1 :

2015 — Secure Transmission with Reverse Firewalls — Protecting Alice

Alice

The idea

RF-Alice

Bob

Aeg

AI (_Aa ='~gClC(k

\ 4

B « gt

»

Ky < g%

Alice

A

Kg < g

aab

KA;KB>

Alice RF-Alice Bob
A<—ga ‘A’<—Aa=gaa‘
:Bl(_BCZ:gab: B<—gb
Ky < g% Kg < g

Another issue

RF-Alice

Bob

A1

A« A% =

\ 4

ABI<_Ba =ga’b

[
»

B « g°

<

KA:]-

A

Kg <1

BadK>

®

no

\ 4

Behave normally

yes

\ 4

Send another A

aab

v
(]

Subversion-resilient AKE — Example 1 :

2015 — Secure Transmission with Reverse Firewalls — Protecting Bob

A first idea that does not work : RF-Bob = RF-Alice

Ky<g

Alice RF-Alice RF-Bob Bob x
a ! a 7 B
A<y > 44 > A <4 > Rejection samplingon b :
aabB |, B" « B'® . B' « BB . Be g? Ky gaabB H(K)=0..0]|| rand
Ideas (but bad) : randomizing K, Bob starting the protocol
The solution
Alice RF-Alice RF-Bob Bob
("« Rand(Maul(C, cr)) C' < Rand(Maul(C,,B))) C < Com(g?)
A« g° ‘ A« A% ‘ A"« A'B)
0" < Open(C")] 0" « Open(C") 0 < Open(C)

Subversion-resilient AKE — Example 1 :

2015 — Secure Transmission with Reverse Firewalls — Study

Alice

Bob

RF-Alice RF-Bob Bob
C" « Rand(Maul(C,a)) | C" < Rand(Maul(C,))| € « Com(g?)
‘ Aeg® | wea | arew ‘
0" « Open(C") '] 0' « Open(C") ') O < Open(C) '

NENS

yes

Functionality maintaining b

Leaks first key bit
Unprotectable

)

Functionality maintaining subversions

104

Security preservation J

Exfiltration-resilience J ‘ 20

Subversion-resilient AKE — Example 2 :

2020 — Designing Reverse Firewalls for the Real World

To protect : server-authenticated DH (TLS)

Client Server

a

g

\ 4

g°,Sign(skg, g%|1g")

A

No commitment scheme

No pairings

1 round trip

Reinforced models

||| (| || =t

Only client-side (but better for NSA)

Subversion-resilient AKE — Example 2 :

2020 — Designing Reverse Firewalls for the Real World — Handshake

Previous idea doesn’t work
A’ and B unknown to Client

\» Can’t verify o

pkg

®

Client

pkg
A< g°

RF-Client

A« A%

Server

P

\ 4

B« gPo

\ 4

-
<

Verify(pkg

,0,A" || B)

B' « B% o

skg,pkg

o < Sign(skg, A’ || B)

Ideas : randomizing signature content (bad), RF reveal exponent to client (maybe good)

pkg

Solution

Verify(pkg, o, A" || B)

K, « paxy’

Client

pkg| RF-Client Server |skg,pkg
A« g? A« A“
> > KB (_Arbxy
b
< Bcg.oy o <% Sign(skg, A'" || B)
Verify(pkB,a,A’y || B)

___Boy <yxa
‘ 4 |:22

Subversion-resilient AKE — Example 2 :

2020 — Designing Reverse Firewalls for the Real World — Message exchange

Previous paper

« Functionality maintaining subversions » with unique encryption, cheat :

Dec(Enc(m, k), k) # m : not functionality maintaining

Excludes

\ 4

mm Encrypt messages with attacker key

v

mm Rejection sampling on m (add spaces)

\ 4

— Input trigger

Solution : double-layered encryption

Client & Server

RFs

—

RFs can rerandomize
SymEnc with K’

—

4

Client OK, RF BAD : layer 1

Client BAD, RF OK : layer 2

IT:B

Subversion-resilient AKE — Example 2 :

2020 — Designing Reverse Firewalls for the Real World — Message exchange

Verify(pkg, o, A)l-/i 1B;)

!
Kl — Balxyl’ KZ —

1

pPkp, Pkrp
Client

A < g% Ay, Ay c < Enc(pkgp, ay) -

pkg,Skpp, Dkrp
RF-Client

Dec(skgp,c) = a,

AZl,Agz, Enc(pkgp, a, X az):

SkB,pkB

Server

by X by X
K1<—A11 yl,K2<—A22 Y2

A

2

!/ !/
Baleé Bl: Bz; 0,Y1,Y2 KZ - Bazxazx]/z

o <% Sign(skg, A}YY||B;)

C < Enc(K;,m) —

Client
r<$R
ki < H;(r||K>)
C'«k,BC
t « MAC(k,, C'||r)

r,C' t

< B1;BZ; 0,Y1, V2
Verify(pkg,0,..),v{ =vi X a;
2
RF-Client
r ¥R

k; < H;(r||K3) r,C',t

A

ki < Hi(r'||K2)
C"—k, Dk, DC
t' « MAC(kS, C"'||™)

Server
ki « Hi(r'||IK;) b— m < Dec(K,,C)
C—kidC"

* Of course, MACs are verified ‘ 24

Subversion-resilient AKE — Example 2 :

2020 — Designing Reverse Firewalls for the Real World — Exfiltration

Before

2

Client : b <% {0,1}
b =0 :implem
b=1:spec

-<:>RF

<:>

A must
find b

But spec ideal : real world => reference implementation

After

4

Client : b <% {0,1}
b =0 :implem 1
b=1:implem 2

-<:>RF

<:>

A must
find b

Trivial attacks : P1 does nothing, P2 honest

... but « functionality maintaining » is cheating

=> Transcript equivalence

PQ SR-AKE - Introduction :

Goal : same as before but for PQ TLS

Main issue : no PQDH!

Nz

KEM

Client-authenticated KEM key-exchange

pks pks, skg
Client Server
(pk, sk) <% KeyGen(1%) pk

\ 4

(ct,K) <% Encaps(pk)

ct,o o <% Sign(skg, pk||ct)

A

Verify(pks, o, pk||ct)
K < Decaps(sk, ct)

k — KDF(K)

PQ SR-AKE -

Design choices :

First choice : compromise scenario

Before our paper

Not subverted Fully subverted
| |
| “ |
0 1
With our paper
| | | | |
| | | | |
0 Some algos Most algos 1

subverted subverted

Compromise scenario : subset of subvertible algorithms

More efficient protocols (no useless protections)

n »

Spectrum of protocols (for each trust scenario)

PQ SR-AKE - Design choices :

Second choice : setup-free RFs

2015 — Secure Transmission with Reverse Firewalls

\ 4

2020 — Designing Reverse Firewalls for the Real World

RF has no (pkgr, skgr)

\ 4

RF haS (kaF' SkRF)

Setup free : RF with no (pkgp, skrr)

 »

Easier to deploy

+ Naturally stackable RFs

Goal : only setup-free RFs !

PQ SR-AKE - Design choices :

Difficulty 1 : signatures

Client

RF-Client

Server

\ 4

\ 4

o <* Sign(sks, x)

y 3

Client knows x

a

Client doesn’t know x

S

®

Change x to go back to other case

Creation : rerandomizable / unique signature scheme

Verification : RF must check it

PQ SR-AKE - Design choices :

Difficulty 2 : Decaps and KDF

Client Server

(pk, sk) <% KeyGen(1%4) pk

\ 4

(ct,K) <% Encaps(pk)

ct,o o <% Sign(sks, pk||ct)

A

Verify(pks, o, pk||ct)
K « Decaps(sk, ct) k - KDF(K)

Could choose k independent of handshake

Existing solution : double layered encryption !

Adaptation to PQ (possible) J

Setup free version ? x

PQ SR-AKE - Design choices :

Difficulty 3 : Encaps

Client Server

(pk, sk) <% KeyGen(1%4) pk

\ 4

(ct,K) <% Encaps(pk)

ct,o o <% Sign(sks, pk||ct)

A

Verifty(pks, o, pk||ct)
K « Decaps(sk, ct) k — KDF(K)

Easy : Rejection sampling

Hard : Unauthenticated client

Issue of (some) KEMs : server can unilaterally choose K'!

Solution : commitment like 2015, does not work for all KEMs + inefficient !

PQ SR-AKE - The protocol :

Going back to compromise scenarios

Compromise scenario = @ : original protocol

Client

(pk, sk) «* KeyGen(1%)

Verify(pks, o, pk||ct)
K < Decaps(sk, ct)

pk

RF-Client

v

pk

Server

\ 4

ct,o

y 3

ct,o

y 3

(ct,K) «<* Encaps(pk)
o <% Sign(sks, pk||ct)

Compromise scenario = {Verify} : RF re-checks signature

Client

(pk, sk) «* KeyGen(1%)

Verify(pks, o, pk||ct)
K < Decaps(sk, ct)

Server

RF-Client
pk . pk X
) ct,o
Verify(pks, o, pk||ct)
. ct,o

(ct,K) «<* Encaps(pk)
o <% Sign(sks, pk||ct)

PQ SR-AKE - The protocol :

Our compromise scenario — Final protocol

Compromise scenario = {KeyGen, Verify} — A first solution

Client

(pk, sk) «* KeyGen(1%)

pk

RF-Client

Server

pk' < Rand(pk)

»
»

ct' = Unrand(ct),o ct, o

(ct,K) «<* Encaps(pk’)
o < Sign(sks, pk’||ct)

x Can’t verify o

A

Compromise scenario = {KeyGen, Verify} — The solution

Client
(pk, sk) <* KeyGen(1%)

pk

RF-Client

Server

pk’ < Rand(pk,s1) |pk” < Rand(pk’,s,)

pk" < Rand(pk, s¢)

\ 4

ct, o, So

(ct,K) ¥ Encaps(pk'")

P
<

Verify(pks, a, pk" || ct)

ct, 0,5 < Comb(sy, s;)

Verify(pks, o, pk'’||ct)
K < Decaps(sk, ct, s¢)

o <% Sign(sks, pk"'||ct)

PQ SR-AKE - Rerandomizable KEM :

Syntax

“Normal” KEM

(pk, sk) <% KeyGen(1%)
(ct,K) <% Encaps(pk)
K < Decaps(sk, ct)

Rerandomizable KEM

(pk, sk) <* KeyGen(14)
(ct,K) «<* Encaps(pk)

K < Decaps(sk, ct, seed)

pk' < Rand(pk, seed)

seed’ < Comb(seed, seed,)

Usual correctness

Correctness
1/1
!
pk/ KeyGen \qu
Encaps €t » Decaps
' v
Ko K1
KO =K1

Comb correctness

pk 1/1

y seed !
Rand KeyGen
pk’} v sk

ct

Encaps » Decaps

v v

Ko K1

Ko = K4

pk
pk KeyGen [— 14
Rand [«s;=# Comb
pk," SZ \ 4 SC
Rand — Rand -
‘II ‘II
pko pk1
pky = pki 34

PQ SR-AKE - Rerandomizable KEM :

Client
+

Server

Security definitions : IND-CPA too weak, IND-CCA too strong => RIND-CPA !

IND-CPA

(64

(pk, sk) <* KeyGen(l’l)
(ct,K,) <* Encaps(pk)
K, <*x
b <% {0,1}

pk, ct, K,

A

\ 4

Awins iff b =d

Client

Server

RIND-CPA

(64 A
I

(pk, sk) «* KeyGen(lA)

pk
, > RIND-CPA-b
< pk Send seed
(ct,K,) <* Encaps(pk’)

K4 N
b <% {0,1}

ct, Kb -

d, seed

A

A wins iff b = d and Rand(pk, seed) = pk'

PQ SR-AKE - Rerandomizable KEM :

Security definitions : for exfiltration-resilience

RandIND

(64

-

pky

RCombIND

A Cc

-

<

seed <% Seed

pky < Rand(pky, seed)
(pky, sky) <* KeyGen(1%)

pkyp

seed

<

seed «* Seed

s; < Seed

so < Comb(seedy,, seed)

d

Sp

\ 4

y 3

d

y 3

A wins iff b = d

A wins iff b = d

PQ SR-AKE - Rerandomizable KEM :

Instanciations

DH-based

Global parameters : g

KeyGen(l’l) - (x,9%)
Encaps(pk) — (g", pk")

Rand(pk, seed) — pkseed
Comb(sy, S1) = Sg X S1

Decaps(sk, ct, seed) — ctSk>seed

Lattice-based

Global parameters : A

KeyGen(l’l) — ((s, e),As + e)
Encaps(pk) — (ct, K)

Rand(pk, (s',e")) » pk + As' + €'
Comb((s, €9), (51, €1)) = (So + S1,€0 + €1)

Decaps(sk, ct, seed) — UsualDecaps(sk + seed, ct)

PQ SR-AKE - Security definitions :

Definitions (proofs pen-and-paper + cryptoverif)

Exfiltration-resilience
Main goal <
Security preservation

!
More efficient !

AKE with RFs : usual security with malicious RF

Authenticating / Securing : security preservation

Exfiltration-resilience

Obliviousness

AR

PQ SR-AKE - Security definitions :

AKE with RFs

Usual AKE : Newlnstance, Send, Reveal, Corrupt, Test

Additionnal powers

NewRF : RF party creation

<<

SetupRF : link RFs to | /R

Setup-free RFs : we can ignore them !

The proof :

Step 1 — authentication

Step 2 — key secrecy

EUF-CMA signature
Not same SID (initiator)

Not same SID (responder)
RIND-CPA KEM

PQ SR-AKE - Security definitions :

Security preservation (authenticating and securing)

Usual AKE : Newlnstance, Send, Reveal, Corrupt, Test

Additionnal power : SetupRF, SetCode subverted parties

+ Attacker can’t view messages between subverted parties and their RFs

The proof :
Step 1 — authenticating Step 2 — securing
RF re-checks signature Identical to previously
Rerand. => not same SID | (need to replace pk’ honest)

PQ SR-AKE - Security definitions :

Exfiltration-resilience / Obliviousness

Oracles : Newlnstance, Send, Reveal, SetupRF

Exfiltration-resilience : SetCode LoR (& transcripts)

Obliviousness : modified Newlnstance LoR

+ Attacker can’t view messages between subverted parties and their RFs

The proof (both cases) :

Replace pk’ by honest one
Needs to delete sk and pk use on | => Replace K on | by partner R

Advantage Obliviousness < Advantage Exf-Res in reality

Conclusion :

Expand compromise scenario

Example : adapt double-layer encryption (setup-free RF)

Get close to real TLS

Nonces

Legacy fields : version, session IDs, ...

Already considered (not fully) in 2020 paper

Develop solutions to trust algorithms

Watchdogs, implementation verification, ...

Thank you for your attention !

	Diapositive 1
	Diapositive 2
	Diapositive 3
	Diapositive 4
	Diapositive 5
	Diapositive 6
	Diapositive 7
	Diapositive 8
	Diapositive 9
	Diapositive 10
	Diapositive 11
	Diapositive 12
	Diapositive 13
	Diapositive 14
	Diapositive 15
	Diapositive 16
	Diapositive 17
	Diapositive 18
	Diapositive 19
	Diapositive 20
	Diapositive 21
	Diapositive 22
	Diapositive 23
	Diapositive 24
	Diapositive 25
	Diapositive 26
	Diapositive 27
	Diapositive 28
	Diapositive 29
	Diapositive 30
	Diapositive 31
	Diapositive 32
	Diapositive 33
	Diapositive 34
	Diapositive 35
	Diapositive 36
	Diapositive 37
	Diapositive 38
	Diapositive 39
	Diapositive 40
	Diapositive 41
	Diapositive 42
	Diapositive 43

