Journée 5 - Axe 2 - PEPR-PQ TLS

PQ SR-AKE : Subversion-resilient key-exchange in
the post-quantum world

Kevin DUVERGER, Pierre-Alain FOUQUE, Charlie JACOMME,
Guilhem NIOT, Cristina ONETE

Speaker — Kevin DUVERGER 10/ 07 / 2025



Contents :

[ Subversions

Subversions ?

[ Subversion-resilient AKE

[ PQ SR-AKE

]<
=
<

Watchdogs

Reverse firewalls

Unauthenticated DH SR-AKE

Authenticated DH SR-AKE

Design choices

The protocol

Rerandomizable KEM

Security definitions




Introduction :

Cryptographic primitives and protocols

For humans

~~

Specifications

\Q

For machines

~~

Implementations

SN

Possible bugs

~~

-~

Difference between ideal world (specification) and real world (implementation)

¢ Biackbox




Introduction :

Subversion

Leak information

Intentional bugs

Undetectable

Usage exclusivity

attacks

Intelligence agencies

Force backdoors

Mass surveillance

Export Laws 1990’s

They are real !

v A v

Dual EC - 2013

XZ Utils — 2024




Introduction :

EUF-CMA - SIGN

IND-CPA ROR - KEM

(pk, sk) <* KeyGen(l’l)
(ct,Ky) <* Encaps(pk)
K <t x
b <% {0,1}

d « A(pk,ct, Kp)

(pk, sk) <* KeyGen(l’l)
(m*,a*) - c/qoSign(.)(pk)

A wins iff
Verify(pk,c*,m*) =1Am* ¢ L

A wins iff b =d

oSign(m)

o <% Sign(sk, m)
L« LU{m}
return o

Algorithms are idealized !

~~

Need to consider implementation vs specification in models !




Subversions — Attacks :

Subversions :

similar to steganography on cryptographic elements




Subversions — Attacks :

Starting point : subliminal channels, Gustavus J. Simmons, 1980’s

!

My Mo
Prisoner1 | |1 Warden ) | Prisoner 2
‘ m'y ‘ my
Warden » Wants plaintext
> m || Sign(skg, m,r)
Prisoners * Want integrity

Attack : needs GetRandom(o, sk) —» r

Examples : Ong-Schnorr-Shamir / EIGamal

o = Sign(skg, m,m")

m,o m,o
Warden

A 4

Prisoner 2

\ 4

Prisoner 1

OK GetRandom(o, skp) » m”*




Subversions — Attacks :

Kleptography, Young and Yung, 1990’s

Subverted RSA KeyGen

p <% RandomPrimeGen(1%)

A

y

q <* Random

PrimeGen(1%)

A

y

n<—p><q

[
»

A

y

e < Enc(pkysa, p)

y

d « e 1 mod ¢(n)

NSA

Dec(e, skysa) = p

Output : (pk,sk) < ((n,e),d)

Breaks all security




Subversions — Attacks :

Algorithm Substitution Attacks (2014 — Now)

Input trigger
sk,m

T |

yes

no

Aa « sk o « Sign(sk,m)

Rejection sampling
sk,m

——

Sign

\ 4

\ 4

0; < DeterminsticSign(sk, m,1;)

S

i+ +

P example :

yes G++)

'A

Exclusivity : encrypt, Undetectability : for later




Subversions — Real world attacks :

Edward Snhowden — Dual EC DRBG - 2013

So < seed

Global parameters : P, (

» 51 < SoP.x —> S, « 5qP.x " S3 « S,P.x » S, « S3P.x
1 < 510.x Ty « S,0Q.x 73 <« S30.x Ty < S30.x
Whatif P =eQ ?
NSA (only one to know ¢)
T > " si0 " siP.x > > Si+1
2 possible y e X s5;Q =s;P

v




Subversions — Watchdogs :

Offline watchdogs = test before production — Blackbox testing

Deterministic watchdog (RSA encryption) Probabilistic (RSA keygen)
x; = (pk;,m;) < (PH x M)
X4 Xy Xy Watchdog
3} R 5 . seed, L sk
X; Specification > —— pkq,sky

\ 4

—— pk,, sk,

l l l l seed,

o) o Ck

Watchdog | o/ «f b4 seed,
€1

Implementation

pks, sk
Co c” ’ ’ x
I N {El—
X; Implementation
L _ - - _ seedy, . Lk, sk,

X1 X w X
“ ‘ 1




Subversions — Watchdogs :

sk,m

input,

|

alg(input;)

}

output,

Online watchdog = test always — Blackbox testing

t =
clean

4

Input trigger (signature)

M| = oo

\J

P(detect) = 0

Online watchdog

m « challenge® m

S T

Time bomb (can detect too)

Inputy_q
. 4 t=t"—-1
= alg(lnplwt*—l) clean
|
outputy_q J

Input;~

|

alg(input+)

!

output«

-

o « sk S

A\ 4

<

Verify(pks, o, m)

®

inputysyq
!
alg(inputy41)
|

output, ;4




Subversions — Watchdogs :

Blackbox testing NOT SUFFICIENT — Fine grain testing

Algo

Rejection sampling

input

Solution (KeyGen example)

Y Split-program model RandGen

dKeyGen

\ 4

outl-

« DeterminsticAlg(input, 1;)

Trusted amalgamation

Trusted o

S

KeyGen = dKeyGen o RandGen = dKeyGen(RandGen)

Undetectable for any blackbox test

[+ +
no
Protected KeyGen (double splitting)
yes
l RG RG4 RandExtract dKeyGen
out KeyGen() = dKeyGen(RandExtract(RGy(), RG,()))

]




Subversions — Reverse firewalls :

Watchdogs : limits + not adapted to protocols — reverse firewalls

2014 - lllya Mironov, Noah-Stephens Davidowitz

Firewall

Alice (safe)J

x

o

®

Reverse firewall

Alice

bad m

%

cleanm’

Stackable RFs : > 1 good RF — clean output

x

RF 1

RF 2

0)
Alice | -Radm— |

bad m®

| bad m(z): .

2

A

RF i

bad m(¢—1

clean m®

®

v

4

" A

x

RF n

clean
m(n_l)

| cleanm’

4

4




Subversions — Reverse firewalls :

RF — Example (+ EIGamal instanciation)

ct <* Enc(pk, m)

Alice

Bob

(pk, sk) «* KeyGen(1%)

y 3

ct

RF-Alice

pk

pk

A

A

ct

v

RandCT(ct)

v

m « Dec(sk, ct)

RF-Bob

pk

y

RandPK(pk)
ct

»
»

CorrCT(ct)

KeyGen(1%) : (x, g%)

Enc(pk,m) : (g0, m X pk™)

RandCT(ct) : (g™ X cty, pk™ X cty) RandPK(pk) : pk™

Dec(sk, ct) : cty/ct3k
CorrCT(ct) : (ct 2, cty)




Subversions — Reverse firewalls :

RF — Properties

m : Honest, m : Malicious,

: Subverted

Alice

RF-A

Functionality maintaining

Bob

g

X

2

Still correct ?

RF not trustworthy

Alice

RF-A

g

X

Bob
-

Security broken ?

Security preserving

RF-A

g

X

Bob
)

Still security for Alice ?

0.5 Imlem
0.5 Spec

Exfiltration-resilience

RF-A

X

Bob
)

Can A distinguish ?




Subversion-resilient AKE — Example 1 :

2015 — Secure Transmission with Reverse Firewalls

To protect : unauthenticated DH

Alice

Bob

\ 4

y 3

+ Authentication

\ 4

Unique signature + sign other thing

+ Message exchange

\ 4

Unique symmetric encryption

Studied in other solution




Subversion-resilient AKE — Example 1 :

2015 — Secure Transmission with Reverse Firewalls — Protecting Alice

Alice

The idea

RF-Alice

Bob

Aeg

AI (_Aa ='~gClC(k

\ 4

B « gt

»

Ky < g%

Alice

A

Kg < g

aab

KA;KB>

Alice RF-Alice Bob
A<—ga ‘A’<—Aa=gaa‘
:Bl(_BCZ:gab: B<—gb
Ky < g% Kg < g

Another issue

RF-Alice

Bob

A1

A« A% =

\ 4

ABI<_Ba =ga’b

[
»

B « g°

<

KA:]-

A

Kg <1

BadK>

®

no

\ 4

Behave normally

yes

\ 4

Send another A

aab

v
(]




Subversion-resilient AKE — Example 1 :

2015 — Secure Transmission with Reverse Firewalls — Protecting Bob

A first idea that does not work : RF-Bob = RF-Alice

Ky<g

Alice RF-Alice RF-Bob Bob x
a ! a 7 B
A<y > 44 > A <4 > Rejection samplingon b :
aabB |, B" « B'® . B' « BB . Be g? Ky  gaabB H(K)=0..0]|| rand
Ideas (but bad) : randomizing K, Bob starting the protocol
The solution
Alice RF-Alice RF-Bob Bob
("« Rand(Maul(C, cr)) C' < Rand(Maul(C,,B)) ) C < Com(g?)
A« g° ‘ A« A% ‘ A"« A'B )
0" < Open(C") ] 0" « Open(C" ) 0 < Open(C)




Subversion-resilient AKE — Example 1 :

2015 — Secure Transmission with Reverse Firewalls — Study

Alice

Bob

RF-Alice RF-Bob Bob
C" « Rand(Maul(C,a)) | C" < Rand(Maul(C,))| € « Com(g?)
‘ Aeg® | wea | arew ‘
0" « Open(C") ' ] 0' « Open(C") ' ) O < Open(C) '

NENS

yes

Functionality maintaining b

Leaks first key bit
Unprotectable

)

Functionality maintaining subversions

104

Security preservation J

Exfiltration-resilience J ‘ 20




Subversion-resilient AKE — Example 2 :

2020 — Designing Reverse Firewalls for the Real World

To protect : server-authenticated DH (TLS)

Client Server

a

g

\ 4

g°,Sign(skg, g%|1g")

A

No commitment scheme

No pairings

1 round trip

Reinforced models

||| (| || =t

Only client-side (but better for NSA)




Subversion-resilient AKE — Example 2 :

2020 — Designing Reverse Firewalls for the Real World — Handshake

Previous idea doesn’t work
A’ and B unknown to Client

\» Can’t verify o

pkg

®

Client

pkg
A< g°

RF-Client

A« A%

Server

P

\ 4

B« gPo

\ 4

-
<

Verify(pkg

,0,A" || B)

B' « B% o

skg,pkg

o < Sign(skg, A’ || B)

Ideas : randomizing signature content (bad), RF reveal exponent to client (maybe good)

pkg

Solution

Verify(pkg, o, A" || B)

K, « paxy’

Client

pkg| RF-Client Server |skg,pkg
A« g? A« A“
> > KB (_Arbxy
b
< Bcg.oy o <% Sign(skg, A'" || B)
Verify(pkB,a,A’y || B)

___Boy <yxa
‘ 4 |:22




Subversion-resilient AKE — Example 2 :

2020 — Designing Reverse Firewalls for the Real World — Message exchange

Previous paper

« Functionality maintaining subversions » with unique encryption, cheat :

Dec(Enc(m, k), k) # m : not functionality maintaining

Excludes

\ 4

mm Encrypt messages with attacker key

v

mm Rejection sampling on m (add spaces)

\ 4

— Input trigger

Solution : double-layered encryption

Client & Server

RFs

—

RFs can rerandomize
SymEnc with K’

—

4

Client OK, RF BAD : layer 1

Client BAD, RF OK : layer 2

IT:B




Subversion-resilient AKE — Example 2 :

2020 — Designing Reverse Firewalls for the Real World — Message exchange

Verify(pkg, o, A)l-/i 1B;)

!
Kl — Balxyl’ KZ —

1

pPkp, Pkrp
Client

A < g% Ay, Ay c < Enc(pkgp, ay) -

pkg,Skpp, Dkrp
RF-Client

Dec(skgp,c) = a,

AZl,Agz, Enc(pkgp, a, X az):

SkB,pkB

Server

by X by X
K1<—A11 yl,K2<—A22 Y2

A

2

!/ !/
Baleé Bl: Bz; 0,Y1,Y2 KZ - Bazxazx]/z

o <% Sign(skg, A}YY||B;)

C < Enc(K;,m) —

Client
r<$R
ki < H;(r||K>)
C'«k,BC
t « MAC(k,, C'||r)

r,C' t

< B1;BZ; 0,Y1, V2
Verify(pkg,0,..),v{ =vi X a;
2
RF-Client
r ¥R

k; < H;(r||K3) r,C',t

A

ki < Hi(r'||K2)
C"—k, Dk, DC
t' « MAC(kS, C"'||™)

Server
ki « Hi(r'||IK;) b— m < Dec(K,,C)
C—kidC"

* Of course, MACs are verified ‘ 24




Subversion-resilient AKE — Example 2 :

2020 — Designing Reverse Firewalls for the Real World — Exfiltration

Before

2

Client : b <% {0,1}
b =0 :implem
b=1:spec

-<:>RF

<:>

A must
find b

But spec ideal : real world => reference implementation

After

4

Client : b <% {0,1}
b =0 :implem 1
b=1:implem 2

-<:>RF

<:>

A must
find b

Trivial attacks : P1 does nothing, P2 honest

... but « functionality maintaining » is cheating

=> Transcript equivalence




PQ SR-AKE - Introduction :

Goal : same as before but for PQ TLS

Main issue : no PQDH!

Nz

KEM

Client-authenticated KEM key-exchange

pks pks, skg
Client Server
(pk, sk) <% KeyGen(1%) pk

\ 4

(ct,K) <% Encaps(pk)

ct,o o <% Sign(skg, pk||ct)

A

Verify(pks, o, pk||ct)
K < Decaps(sk, ct)

k — KDF(K)




PQ SR-AKE -

Design choices :

First choice : compromise scenario

Before our paper

Not subverted Fully subverted
| |
| “ |
0 1
With our paper
| | | | |
| | | | |
0 Some algos Most algos 1

subverted subverted

Compromise scenario : subset of subvertible algorithms

More efficient protocols (no useless protections)

n »

Spectrum of protocols (for each trust scenario)




PQ SR-AKE - Design choices :

Second choice : setup-free RFs

2015 — Secure Transmission with Reverse Firewalls

\ 4

2020 — Designing Reverse Firewalls for the Real World

RF has no (pkgr, skgr)

\ 4

RF haS (kaF' SkRF)

Setup free : RF with no (pkgp, skrr)

 »

Easier to deploy

+ Naturally stackable RFs

Goal : only setup-free RFs !




PQ SR-AKE - Design choices :

Difficulty 1 : signatures

Client

RF-Client

Server

\ 4

\ 4

o <* Sign(sks, x)

y 3

Client knows x

a

Client doesn’t know x

S

®

Change x to go back to other case

Creation : rerandomizable / unique signature scheme

Verification : RF must check it




PQ SR-AKE - Design choices :

Difficulty 2 : Decaps and KDF

Client Server

(pk, sk) <% KeyGen(1%4) pk

\ 4

(ct,K) <% Encaps(pk)

ct,o o <% Sign(sks, pk||ct)

A

Verify(pks, o, pk||ct)
K « Decaps(sk, ct) k - KDF(K)

Could choose k independent of handshake

Existing solution : double layered encryption !

Adaptation to PQ (possible) J

Setup free version ? x




PQ SR-AKE - Design choices :

Difficulty 3 : Encaps

Client Server

(pk, sk) <% KeyGen(1%4) pk

\ 4

(ct,K) <% Encaps(pk)

ct,o o <% Sign(sks, pk||ct)

A

Verifty(pks, o, pk||ct)
K « Decaps(sk, ct) k — KDF(K)

Easy : Rejection sampling

Hard : Unauthenticated client

Issue of (some) KEMs : server can unilaterally choose K'!

Solution : commitment like 2015, does not work for all KEMs + inefficient !




PQ SR-AKE - The protocol :

Going back to compromise scenarios

Compromise scenario = @ : original protocol

Client

(pk, sk) «* KeyGen(1%)

Verify(pks, o, pk||ct)
K < Decaps(sk, ct)

pk

RF-Client

v

pk

Server

\ 4

ct,o

y 3

ct,o

y 3

(ct,K) «<* Encaps(pk)
o <% Sign(sks, pk||ct)

Compromise scenario = {Verify} : RF re-checks signature

Client

(pk, sk) «* KeyGen(1%)

Verify(pks, o, pk||ct)
K < Decaps(sk, ct)

Server

RF-Client
pk . pk X
) ct,o
Verify(pks, o, pk||ct)
. ct,o

(ct,K) «<* Encaps(pk)
o <% Sign(sks, pk||ct)




PQ SR-AKE - The protocol :

Our compromise scenario — Final protocol

Compromise scenario = {KeyGen, Verify} — A first solution

Client

(pk, sk) «* KeyGen(1%)

pk

RF-Client

Server

pk' < Rand(pk)

»
»

ct' = Unrand(ct),o ct, o

(ct,K) «<* Encaps(pk’)
o < Sign(sks, pk’||ct)

x Can’t verify o

A

Compromise scenario = {KeyGen, Verify} — The solution

Client
(pk, sk) <* KeyGen(1%)

pk

RF-Client

Server

pk’ < Rand(pk,s1) |pk” < Rand(pk’,s,)

pk" < Rand(pk, s¢)

\ 4

ct, o, So

(ct,K) ¥ Encaps(pk'")

P
<

Verify(pks, a, pk" || ct)

ct, 0,5 < Comb(sy, s;)

Verify(pks, o, pk'’||ct)
K < Decaps(sk, ct, s¢)

o <% Sign(sks, pk"'||ct)




PQ SR-AKE - Rerandomizable KEM :

Syntax

“Normal” KEM

(pk, sk) <% KeyGen(1%)
(ct,K) <% Encaps(pk)
K < Decaps(sk, ct)

Rerandomizable KEM

(pk, sk) <* KeyGen(14)
(ct,K) «<* Encaps(pk)

K < Decaps(sk, ct, seed)

pk' < Rand(pk, seed)

seed’ < Comb(seed, seed,)

Usual correctness

Correctness
1/1
!
pk/ KeyGen \qu
Encaps €t » Decaps
' v
Ko K1
KO =K1

Comb correctness

pk 1/1

y seed !
Rand KeyGen
pk’} v sk

ct

Encaps » Decaps

v v

Ko K1

Ko = K4

pk
pk KeyGen [— 14
Rand [«s;=# Comb
pk," SZ \ 4 SC
Rand — Rand -
‘II ‘II
pko pk1
pky = pki 34




PQ SR-AKE - Rerandomizable KEM :

Client
+

Server

Security definitions : IND-CPA too weak, IND-CCA too strong => RIND-CPA !

IND-CPA

(64

(pk, sk) <* KeyGen(l’l)
(ct,K,) <* Encaps(pk)
K, <*x
b <% {0,1}

pk, ct, K,

A

\ 4

Awins iff b =d

Client

Server

RIND-CPA

(64 A
I

(pk, sk) «* KeyGen(lA)

pk
, > RIND-CPA-b
< pk Send seed
(ct,K,) <* Encaps(pk’)

K4 N
b <% {0,1}

ct, Kb -

d, seed

A

A wins iff b = d and Rand(pk, seed) = pk'




PQ SR-AKE - Rerandomizable KEM :

Security definitions : for exfiltration-resilience

RandIND

(64

-

pky

RCombIND

A Cc

-

<

seed <% Seed

pky < Rand(pky, seed)
(pky, sky) <* KeyGen(1%)

pkyp

seed

<

seed «* Seed

s; < Seed

so < Comb(seedy,, seed)

d

Sp

\ 4

y 3

d

y 3

A wins iff b = d

A wins iff b = d




PQ SR-AKE - Rerandomizable KEM :

Instanciations

DH-based

Global parameters : g

KeyGen(l’l) - (x,9%)
Encaps(pk) — (g", pk")

Rand(pk, seed) — pkseed
Comb(sy, S1) = Sg X S1

Decaps(sk, ct, seed) — ctSk>seed

Lattice-based

Global parameters : A

KeyGen(l’l) — ((s, e),As + e)
Encaps(pk) — (ct, K)

Rand(pk, (s',e")) » pk + As' + €'
Comb( (s, €9), (51, €1)) = (So + S1,€0 + €1)

Decaps(sk, ct, seed) — UsualDecaps(sk + seed, ct)




PQ SR-AKE - Security definitions :

Definitions (proofs pen-and-paper + cryptoverif)

Exfiltration-resilience
Main goal <
Security preservation

!
More efficient !

AKE with RFs : usual security with malicious RF

Authenticating / Securing : security preservation

Exfiltration-resilience

Obliviousness

AR




PQ SR-AKE - Security definitions :

AKE with RFs

Usual AKE : Newlnstance, Send, Reveal, Corrupt, Test

Additionnal powers

NewRF : RF party creation

<<

SetupRF : link RFs to | /R

Setup-free RFs : we can ignore them !

The proof :

Step 1 — authentication

Step 2 — key secrecy

EUF-CMA signature
Not same SID (initiator)

Not same SID (responder)
RIND-CPA KEM




PQ SR-AKE - Security definitions :

Security preservation (authenticating and securing)

Usual AKE : Newlnstance, Send, Reveal, Corrupt, Test

Additionnal power : SetupRF, SetCode subverted parties

+ Attacker can’t view messages between subverted parties and their RFs

The proof :
Step 1 — authenticating Step 2 — securing
RF re-checks signature Identical to previously
Rerand. => not same SID | (need to replace pk’ honest)




PQ SR-AKE - Security definitions :

Exfiltration-resilience / Obliviousness

Oracles : Newlnstance, Send, Reveal, SetupRF

Exfiltration-resilience : SetCode LoR (& transcripts)

Obliviousness : modified Newlnstance LoR

+ Attacker can’t view messages between subverted parties and their RFs

The proof (both cases) :

Replace pk’ by honest one
Needs to delete sk and pk use on | => Replace K on | by partner R

Advantage Obliviousness < Advantage Exf-Res in reality




Conclusion :

Expand compromise scenario

Example : adapt double-layer encryption (setup-free RF)

Get close to real TLS

Nonces

Legacy fields : version, session IDs, ...

Already considered (not fully) in 2020 paper

Develop solutions to trust algorithms

Watchdogs, implementation verification, ...




Thank you for your attention !
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