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Introduction :

Cryptographic primitives and protocols

For humans

Specifications Implementations

Possible bugs

Difference between ideal world (specification) and real world (implementation)

For machines

Black box
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Introduction :

Intentional bugs Undetectable

Usage exclusivity

They are real !

Export Laws 1990’s

Dual EC – 2013

XZ Utils – 2024

Subversion 

attacks

Leak information

Intelligence agencies

Force backdoors

Mass surveillance
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Introduction :

Algorithms are idealized !

Need to consider implementation vs specification in models !

IND-CPA ROR – KEM

𝑝𝑘, 𝑠𝑘 ←$ KeyGen 1𝜆

𝑐𝑡, 𝐾0 ←$  Encaps 𝑝𝑘

𝐾1 ←$ 𝒦

𝑏 ←$ 0,1
𝑑 ← 𝒜(𝑝𝑘, 𝑐𝑡, 𝐾𝑏)

𝒜 wins iff 𝑏 = 𝑑

EUF-CMA – SIGN

𝑝𝑘, 𝑠𝑘 ←$ KeyGen 1𝜆

𝑚∗, 𝜎∗ ← 𝒜oSign(.)(𝑝𝑘)

𝒜 wins iff

Verify 𝑝𝑘, 𝜎∗, 𝑚∗ = 1 ∧ 𝑚∗ ∉ ℒ

oSign 𝑚

𝜎 ←$  Sign 𝑠𝑘, 𝑚
ℒ ← ℒ ∪ {𝑚}

return 𝜎
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Subversions – Attacks :

Subversions : similar to steganography on cryptographic elements
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Subversions – Attacks :

Starting point : subliminal channels, Gustavus J. Simmons, 1980’s

Prisoner 1 Prisoner 2Warden

𝑚0 𝑚′0

𝑚1𝑚′1

𝑚 || Sign(𝑠𝑘𝑅, 𝑚, 𝑟)

Attack : needs GetRandom 𝜎, 𝑠𝑘 → 𝑟

𝜎 = Sign(𝑠𝑘𝑅, 𝑚, 𝑚∗)

Prisoner 1 Prisoner 2Warden
𝑚, 𝜎 𝑚, 𝜎

GetRandom 𝜎, 𝑠𝑘𝑅 → 𝑚∗

Warden Wants plaintext

Prisoners Want integrity

Examples : Ong-Schnorr-Shamir / ElGamal

OK



𝑝 ←$  RandomPrimeGen(1𝜆)
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Subversions – Attacks :

Kleptography, Young and Yung, 1990’s

Subverted RSA KeyGen

Dec 𝑒, 𝑠𝑘𝑁𝑆𝐴 → 𝑝

NSA

Breaks all security

𝑞 ←$  RandomPrimeGen(1𝜆)

𝑛 ← 𝑝 × 𝑞

𝑑 =⊥

𝑒 ← Enc(𝑝𝑘𝑁𝑆𝐴, 𝑝)

𝑑 ← 𝑒−1 mod 𝜑(𝑛)

yes
Output : 𝑝𝑘, 𝑠𝑘 ← ( 𝑛, 𝑒 , 𝑑)

!

no



9

Subversions – Attacks :

Algorithm Substitution Attacks (2014 – Now)

Input trigger Rejection sampling

yes no

𝜎 ← 𝑠𝑘 𝜎 ← Sign(𝑠𝑘, 𝑚)

෫Sign

𝑠𝑘, 𝑚

𝜎

෫Sign

𝑠𝑘, 𝑚

𝜎

Exclusivity : encrypt, Undetectability : for later

𝑃 𝜎𝑖

𝜎𝑖 ← DeterminsticSign(𝑠𝑘, 𝑚, 𝑟𝑖)

no

yes

𝑖 + +

P example :
𝜎 −1 = 𝑠𝑘[𝑗]

(𝑗 + +)

𝑚 = 𝑚∗

!

!



10

Subversions – Real world attacks :

Edward Snowden – Dual EC DRBG – 2013

𝑠0 ← 𝑠𝑒𝑒𝑑 𝑠1 ← 𝑠0𝑃. 𝑥 𝑠2 ← 𝑠1𝑃. 𝑥 𝑠3 ← 𝑠2𝑃. 𝑥 𝑠4 ← 𝑠3𝑃. 𝑥 …

Global parameters : 𝑃, 𝑄

𝑟1 ← 𝑠1𝑄. 𝑥 𝑟2 ← 𝑠2𝑄. 𝑥 𝑟3 ← 𝑠3𝑄. 𝑥 𝑟4 ← 𝑠4𝑄. 𝑥

What if 𝑃 = 𝑒𝑄 ?

𝑒 × 𝑠𝑖𝑄 = 𝑠𝑖𝑃

NSA (only one to know 𝑒)

𝑟𝑖 𝑠𝑖+1𝑠𝑖𝑄 𝑠𝑖𝑃. 𝑥

2 possible y
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Subversions – Watchdogs :

Deterministic watchdog (RSA encryption) Probabilistic (RSA keygen)

Specification

Implementation

𝑐1 𝑐2 … 𝑐∗

𝑐1 𝑐2 … 𝑐𝑘

Offline watchdogs = test before production – Blackbox testing

𝑥𝑖 = 𝑝𝑘𝑖 , 𝑚𝑖 ←$ (𝒫𝒦 × ℳ)

𝑥1

𝑥1

𝑥2 … 𝑥𝑘

𝑥2
… 𝑥𝑘

Watchdog

𝑥𝑖

𝑥𝑖

Im
p

le
m

e
n

ta
ti

o
n

Watchdog

𝑠𝑒𝑒𝑑1

𝑠𝑒𝑒𝑑2

𝑠𝑒𝑒𝑑3

…

𝑠𝑒𝑒𝑑𝑘

𝑝𝑘1, 𝑠𝑘1

𝑝𝑘2, 𝑠𝑘2

𝑝𝑘3, 𝑠𝑘3

…

𝑝𝑘2, 𝑠𝑘2
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Subversions – Watchdogs :

Online watchdog = test always – Blackbox testing

Input trigger (signature)

Time bomb (can detect too)

yes
𝜎

𝜎

𝑠𝑘, 𝑚 𝑚 = 𝑚∗

no

ℳ = ∞
↓

P(detect) = 0

Online watchdog

m ← challenge∗ 𝑚

𝜎 ← 𝑠𝑘𝑆

Verify(𝑝𝑘𝑆, 𝜎, 𝑚)

S𝓐

alg(𝑖𝑛𝑝𝑢𝑡1)

𝑖𝑛𝑝𝑢𝑡1

𝑜𝑢𝑡𝑝𝑢𝑡1

𝑡 = 1
clean

… alg(𝑖𝑛𝑝𝑢𝑡𝑡∗−1)

𝑖𝑛𝑝𝑢𝑡𝑡∗−1

𝑜𝑢𝑡𝑝𝑢𝑡𝑡∗−1

𝑡 = 𝑡∗ − 1
clean

alg(𝑖𝑛𝑝𝑢𝑡𝑡∗)

𝑖𝑛𝑝𝑢𝑡𝑡∗

𝑜𝑢𝑡𝑝𝑢𝑡𝑡∗

𝑡 = 𝑡∗

bad
…alg(𝑖𝑛𝑝𝑢𝑡𝑡∗+1)

𝑖𝑛𝑝𝑢𝑡𝑡∗+1

𝑜𝑢𝑡𝑝𝑢𝑡𝑡∗+1

𝑡 = 𝑡∗ + 1
bad
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Subversions – Watchdogs :

Blackbox testing NOT SUFFICIENT – Fine grain testing

Rejection sampling

෫Algo

input

out

𝑃 out𝑖

out𝑖 ← DeterminsticAlg(input, 𝑟𝑖)

no

yes

𝑖 + +

Undetectable for any blackbox test

Solution (KeyGen example)

Trusted amalgamation

Protected KeyGen (double splitting)

Split-program model RandGen dKeyGen

Trusted ∘

KeyGen = dKeyGen ∘ RandGen = dKeyGen 𝑅𝑎𝑛𝑑𝐺𝑒𝑛

RG0 RG1 RandExtract dKeyGen

𝐾𝑒𝑦𝐺𝑒𝑛() = 𝑑𝐾𝑒𝑦𝐺𝑒𝑛 𝑅𝑎𝑛𝑑𝐸𝑥𝑡𝑟𝑎𝑐𝑡 𝑅𝐺0(), 𝑅𝐺1()



…
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Subversions – Reverse firewalls :

Watchdogs : limits + not adapted to protocols → reverse firewalls

Firewall Reverse firewall

𝓐Alice (safe) Alice
bad 𝑚

𝓐

2014 – Illya Mironov, Noah-Stephens Davidowitz

clean 𝑚′

RF 1

Alice
bad 𝑚(0)

RF 2

bad 𝑚(1) bad 𝑚(2)

RF i

bad 𝑚(𝑖−1) clean 𝑚(𝑖) …

RF n

clean 
𝑚(𝑛−1) clean 𝑚′

𝓐

Stackable RFs : ≥ 𝟏 good RF → clean output
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Subversions – Reverse firewalls :

RF – Example (+ ElGamal instanciation)

Alice Bob

𝑝𝑘, 𝑠𝑘 ←$ KeyGen(1𝜆)𝑝𝑘

𝑐𝑡 ←$ Enc(𝑝𝑘, 𝑚) 𝑐𝑡

𝑚 ← Dec(𝑠𝑘, 𝑐𝑡)

𝑝𝑘

𝑐𝑡

RF-Alice RF-Bob

RandPK(𝑝𝑘)

RandCT(𝑐𝑡) CorrCT(𝑐𝑡)

KeyGen(1𝜆) ∶ 𝑥, 𝑔𝑥 Enc 𝑝𝑘, 𝑚 ∶ 𝑔𝑟0  , 𝑚 × 𝑝𝑘𝑟0 Dec 𝑠𝑘, 𝑐𝑡 ∶ 𝑐𝑡1/𝑐𝑡0
𝑠𝑘

RandCT 𝑐𝑡 ∶ (𝑔𝑟1 × 𝑐𝑡0, 𝑝𝑘𝑟1 × 𝑐𝑡1) RandPK 𝑝𝑘 ∶ 𝑝𝑘𝑟2 CorrCT 𝑐𝑡 ∶ (𝑐𝑡0
𝑟2 , 𝑐𝑡1)

𝑝𝑘
𝑝𝑘

𝑐𝑡
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Subversions – Reverse firewalls :

RF – Properties

∎ : Honest, ∎ : Malicious, ∎ : Subverted

Functionality maintaining

Alice RF-A Bob

Still correct ?

RF not trustworthy

Alice RF-A Bob

Security broken ?

Security preserving

Alice RF-A Bob

Still security for Alice ?

Exfiltration-resilience

Alice RF-A Bob

Can 𝓐 distinguish ?

0.5 Imlem

0.5 Spec

𝓐 𝓐

𝓐 𝓐
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Subversion-resilient AKE – Example 1 :

2015 – Secure Transmission with Reverse Firewalls

To protect : unauthenticated DH

Alice Bob

𝑔𝑎

𝑔𝑏

+ Authentication + Message exchange

Unique signature + sign other thing Unique symmetric encryption

Studied in other solution
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Subversion-resilient AKE – Example 1 :

2015 – Secure Transmission with Reverse Firewalls – Protecting Alice

The idea

Alice Bob

𝐴 ← 𝑔𝑎

𝐵 ← 𝑔𝑏

RF-Alice

𝐴′ ← 𝐴𝛼 = 𝑔𝑎𝛼

𝐵

𝐾𝐴 ← 𝑔𝑎𝑏 𝐾𝐵 ← 𝑔𝑎𝛼𝑏

𝐾𝐴 ≠ 𝐾𝐵

Alice Bob

𝐴 ← 𝑔𝑎

𝐵 ← 𝑔𝑏

RF-Alice

𝐴′ ← 𝐴𝛼 = 𝑔𝑎𝛼

𝐵′ ← 𝐵𝛼 = 𝑔𝛼𝑏

𝐾𝐴 ← 𝑔𝑎𝛼𝑏 𝐾𝐵 ← 𝑔𝑎𝛼𝑏

Another issue

Alice Bob

𝐴 ← 1

𝐵 ← 𝑔𝑏

RF-Alice

𝐴′ ← 𝐴𝛼 = 1

𝐵′ ← 𝐵𝛼 = 𝑔𝛼𝑏

𝐾𝐴 = 1 𝐾𝐵 ← 1

Bad K 𝐴 = 1

no

yes

Behave normally

Send another A
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Subversion-resilient AKE – Example 1 :

2015 – Secure Transmission with Reverse Firewalls – Protecting Bob

A first idea that does not work : RF-Bob = RF-Alice

Alice Bob

𝐴 ← 𝑔𝑎

𝐵 ← 𝑔𝑏

RF-Alice

𝐴′′ ← 𝐴′𝛽

𝐵′′ ← 𝐵′𝛼
𝐾𝐴 ← 𝑔𝑎𝛼𝑏𝛽 𝐾𝐵 ← 𝑔𝑎𝛼𝑏𝛽

The solution

RF-Bob

𝐵′ ← 𝐵𝛽

𝐴′ ← 𝐴𝛼

Rejection sampling on b :
𝐻 𝐾 = 0 … 0 || 𝑟𝑎𝑛𝑑

Alice BobRF-Alice RF-Bob

𝐶 ← Com(𝑔𝑏)C′ ← Rand Maul 𝐶, 𝛽

𝐴 ← 𝑔𝑎 𝐴′′ ← 𝐴′𝛽𝐴′ ← 𝐴𝛼

𝑂 ← Open(𝐶)𝑂′ ← Open(𝐶′)𝑂′′ ← 𝑂𝑝𝑒𝑛(𝐶′′)

C′′ ← Rand Maul 𝐶, 𝛼

Ideas (but bad) : randomizing K, Bob starting the protocol
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Subversion-resilient AKE – Example 1 :

2015 – Secure Transmission with Reverse Firewalls – Study

Alice BobRF-Alice RF-Bob

Functionality maintaining

Leaks first key bit
Unprotectable

Functionality maintaining subversions

Bob
𝐾 0
= 1

yes

no

STOP

GO

Security preservation

Exfiltration-resilience

𝐶 ← Com(𝑔𝑏)C′ ← Rand Maul 𝐶, 𝛽

𝐴 ← 𝑔𝑎 𝐴′′ ← 𝐴′𝛽𝐴′ ← 𝐴𝛼

𝑂 ← Open(𝐶)𝑂′ ← Open(𝐶′)𝑂′′ ← 𝑂𝑝𝑒𝑛(𝐶′′)

C′′ ← Rand Maul 𝐶, 𝛼
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Subversion-resilient AKE – Example 2 :

2020 – Designing Reverse Firewalls for the Real World

To protect : server-authenticated DH (TLS)

Client Server

𝑔𝑎

𝑔𝑏, Sign(𝑠𝑘𝐵, 𝑔𝑎||𝑔𝑏)

No commitment scheme

No pairings

1 round trip

Reinforced models

Only client-side (but better for NSA)
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Subversion-resilient AKE – Example 2 :

2020 – Designing Reverse Firewalls for the Real World – Handshake

Previous idea doesn’t work
A’ and B unknown to Client

Client Server

𝐴 ← 𝑔𝑎

𝐵 ← 𝑔𝑏 , 𝜎

RF-Client

𝐴′ ← 𝐴𝛼

𝐵′ ← 𝐵𝛼 , 𝜎

𝜎 ←$ Sign(𝑠𝑘𝐵, 𝐴′ |  𝐵

𝑝𝑘𝐵 𝑝𝑘𝐵 𝑠𝑘𝐵 , 𝑝𝑘𝐵

Verify(𝑝𝑘𝐵, 𝜎, 𝐴′ |  𝐵

Can’t verify 𝜎

Solution

Client Server

𝐴 ← 𝑔𝑎

𝐵 ← 𝑔𝑏, 𝜎, 𝛾

RF-Client

𝐴′ ← 𝐴𝛼

𝐵, 𝜎, 𝛾′ ← 𝛾 × 𝛼

𝜎 ←$ Sign(𝑠𝑘𝐵, 𝐴′𝛾
 |  𝐵

𝑝𝑘𝐵 𝑝𝑘𝐵 𝑠𝑘𝐵 , 𝑝𝑘𝐵

Verify(𝑝𝑘𝐵 , 𝜎, 𝐴′𝛾
 |  𝐵

Verify(𝑝𝑘𝐵, 𝜎, 𝐴𝛾′ |  𝐵

𝐾𝐵 ← 𝐴′𝑏×𝛾

Ideas : randomizing signature content (bad), RF reveal exponent to client (maybe good)

𝐾𝐴 ← 𝐵𝑎×𝛾′
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Subversion-resilient AKE – Example 2 :

2020 – Designing Reverse Firewalls for the Real World – Message exchange

Previous paper

« Functionality maintaining subversions » with unique encryption, cheat :

Dec Enc 𝑚, 𝑘 , 𝑘 ≠ 𝑚 : not functionality maintaining

Encrypt messages with attacker key

Rejection sampling on 𝑚 (add spaces)

Input trigger

Excludes

Solution : double-layered encryption

Client & Server 𝐾, 𝐾′

RFs 𝐾′

RFs can rerandomize
SymEnc with 𝐾′

Client OK, RF BAD : layer 1

Client BAD, RF OK : layer 2
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Subversion-resilient AKE – Example 2 :

2020 – Designing Reverse Firewalls for the Real World – Message exchange

Client Server

𝐴𝑖 ← 𝑔𝑎𝑖

𝐵1, 𝐵2, 𝜎, 𝛾1, 𝛾2

RF-Client

𝐴1
𝛼1 , 𝐴2

𝛼2 , Enc(𝑝𝑘𝑅𝐹 , 𝑎2 × 𝛼2)

𝐵1, 𝐵2, 𝜎, 𝛾1
′ , 𝛾2

′

𝜎 ←$ Sign(𝑠𝑘𝐵, 𝐴𝑖
′𝛾𝑖| 𝐵𝑖

𝑝𝑘𝐵, 𝑝𝑘𝑅𝐹 𝑝𝑘𝐵, 𝑠𝑘𝑅𝐹 , 𝑝𝑘𝑅𝐹 𝑠𝑘𝐵 , 𝑝𝑘𝐵

Verify 𝑝𝑘𝐵, 𝜎, … , 𝛾𝑖
′ = 𝛾𝑖 × 𝛼𝑖Verify(𝑝𝑘𝐵 , 𝜎, 𝐴𝑖

𝛾𝑖
′

||𝐵𝑖)

𝐾1 ← 𝐴1
′𝑏1×𝛾1 , 𝐾2 ← 𝐴2

′𝑏2×𝛾2

𝐾1 ← 𝐵1
𝑎1×𝛾1

′

, 𝐾2 ← 𝐵2
𝑎2×𝛾2

′

𝐴1, 𝐴2, c ← Enc(𝑝𝑘𝑅𝐹 , 𝑎2)

Dec 𝑠𝑘𝑅𝐹 , 𝑐 → 𝑎2

𝐾2 ← 𝐵2
𝑎2×𝛼2×𝛾2

𝐶 ← Enc(𝐾1, 𝑚)

Client

𝑟 ←$ ℛ
𝑘𝑖 ← 𝐻𝑖(𝑟||𝐾2)

𝐶′ ← 𝑘1 ⊕ 𝐶
𝑡 ← MAC(𝑘2, 𝐶′||𝑟)

RF-Client

𝑟′ ←$ ℛ
𝑘𝑖 ← 𝐻𝑖(𝑟||𝐾2)
𝑘𝑖

′ ← 𝐻𝑖(𝑟′||𝐾2)
𝐶′′ ← 𝑘1 ⊕ 𝑘1

′ ⊕ 𝐶′
𝑡′ ← MAC(𝑘2

′ , 𝐶′′||𝑟′)

𝑟, 𝐶′, 𝑡 Server
𝑘𝑖

′ ← 𝐻𝑖(𝑟′||𝐾2)
𝐶 ← 𝑘1

′ ⊕ 𝐶′′

𝑟′, 𝐶′′, 𝑡′
𝑚 ← Dec(𝐾1, 𝐶)

* Of course, MACs are verified
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Subversion-resilient AKE – Example 2 :

2020 – Designing Reverse Firewalls for the Real World – Exfiltration

Before
𝓐 must 

find 𝑏

But spec ideal : real world => reference implementation

Client : 𝑏 ←$ {0,1}
𝑏 = 0 : implem

𝑏 = 1 : spec

RF

After
𝓐 must 

find 𝑏

Client : 𝑏 ←$ {0,1}
𝑏 = 0 : implem 1

𝑏 = 1 : implem 2

RF

Trivial attacks : P1 does nothing, P2 honest

… but « functionality maintaining » is cheating

=> Transcript equivalence
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PQ SR-AKE – Introduction :

Goal : same as before but for PQ TLS

Main issue : no PQ DH !

KEM

Client-authenticated KEM key-exchange

Client Server

𝑝𝑘

𝑐𝑡, 𝜎

𝑝𝑘, 𝑠𝑘 ←$ KeyGen(1𝜆)

𝑐𝑡, 𝐾 ←$ Encaps(𝑝𝑘)

𝜎 ←$ Sign(𝑠𝑘𝑆, 𝑝𝑘||𝑐𝑡)

𝑝𝑘𝑆 𝑝𝑘𝑆, 𝑠𝑘𝑆

Verify(𝑝𝑘𝑆, 𝜎, 𝑝𝑘||𝑐𝑡)
𝐾 ← Decaps(𝑠𝑘, 𝑐𝑡)

𝑘 → KDF(𝐾)
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PQ SR-AKE – Design choices :

First choice : compromise scenario

Before our paper

0 1

Fully subvertedNot subverted

With our paper

0 1Some algos

subverted

Most algos

subverted

Compromise scenario : subset of subvertible algorithms

More efficient protocols (no useless protections)

Spectrum of protocols (for each trust scenario)
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PQ SR-AKE – Design choices :

Second choice : setup-free RFs

2015 – Secure Transmission with Reverse Firewalls RF has no (𝑝𝑘𝑅𝐹 , 𝑠𝑘𝑅𝐹)

Setup free : RF with no (𝑝𝑘𝑅𝐹, 𝑠𝑘𝑅𝐹)

2020 – Designing Reverse Firewalls for the Real World RF has (𝑝𝑘𝑅𝐹 , 𝑠𝑘𝑅𝐹)

Easier to deploy

Naturally stackable RFs

Goal : only setup-free RFs !
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PQ SR-AKE – Design choices :

Difficulty 1 : signatures

Client knows 𝑥 Client doesn’t know 𝑥

Change 𝑥 to go back to other case

Verification : RF must check it

Client Server

𝑚1

𝑚2 𝜎 ←$ Sign(𝑠𝑘𝑆, 𝑥)

RF-Client

𝑚1
′

𝑚2
′

Creation : rerandomizable / unique signature scheme
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PQ SR-AKE – Design choices :

Difficulty 2 : Decaps and KDF

Could choose 𝑘 independent of handshake

Client Server

𝑝𝑘

𝑐𝑡, 𝜎

𝑝𝑘, 𝑠𝑘 ←$ KeyGen(1𝜆)

𝑐𝑡, 𝐾 ←$ Encaps(𝑝𝑘)

𝜎 ←$ Sign(𝑠𝑘𝑆, 𝑝𝑘||𝑐𝑡)
Verify(𝑝𝑘𝑆, 𝜎, 𝑝𝑘||𝑐𝑡)

𝐾 ← Decaps(𝑠𝑘, 𝑐𝑡) 𝑘 → KDF(𝐾)

Existing solution : double layered encryption !

Adaptation to PQ (possible)

Setup free version ?
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PQ SR-AKE – Design choices :

Difficulty 3 : Encaps

Easy : Rejection sampling

Client Server

𝑝𝑘

𝑐𝑡, 𝜎

𝑝𝑘, 𝑠𝑘 ←$ KeyGen(1𝜆)

𝑐𝑡, 𝐾 ←$ Encaps(𝑝𝑘)

𝜎 ←$ Sign(𝑠𝑘𝑆, 𝑝𝑘||𝑐𝑡)
Verify(𝑝𝑘𝑆, 𝜎, 𝑝𝑘||𝑐𝑡)

𝐾 ← Decaps(𝑠𝑘, 𝑐𝑡) 𝑘 → KDF(𝐾)

Hard : Unauthenticated client

Issue of (some) KEMs : server can unilaterally choose K !

Solution : commitment like 2015, does not work for all KEMs + inefficient !
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PQ SR-AKE – The protocol :

Going back to compromise scenarios

Compromise scenario = ∅ : original protocol

Client Server

𝑝𝑘

𝑐𝑡, 𝜎

𝑝𝑘, 𝑠𝑘 ←$ KeyGen(1𝜆)

𝑐𝑡, 𝐾 ←$ Encaps(𝑝𝑘)

𝜎 ←$ Sign(𝑠𝑘𝑆, 𝑝𝑘||𝑐𝑡)
Verify(𝑝𝑘𝑆, 𝜎, 𝑝𝑘||𝑐𝑡)

𝐾 ← Decaps(𝑠𝑘, 𝑐𝑡)

Compromise scenario = {Verify} : RF re-checks signature

RF-Client

𝑐𝑡, 𝜎

𝑝𝑘

Client Server

𝑝𝑘

𝑐𝑡, 𝜎

𝑝𝑘, 𝑠𝑘 ←$ KeyGen(1𝜆)
𝑐𝑡, 𝐾 ←$ Encaps(𝑝𝑘)

𝜎 ←$ Sign(𝑠𝑘𝑆, 𝑝𝑘||𝑐𝑡)

Verify(𝑝𝑘𝑆, 𝜎, 𝑝𝑘||𝑐𝑡)
𝐾 ← Decaps(𝑠𝑘, 𝑐𝑡)

RF-Client

𝑐𝑡, 𝜎

𝑝𝑘

Verify(𝑝𝑘𝑆, 𝜎, 𝑝𝑘||𝑐𝑡)
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PQ SR-AKE – The protocol :

Our compromise scenario – Final protocol

Compromise scenario = {KeyGen, Verify} – A first solution

Server

𝑝𝑘

𝑐𝑡′ = Unrand(𝑐𝑡), 𝜎

𝑝𝑘, 𝑠𝑘 ←$ KeyGen(1𝜆)
𝑐𝑡, 𝐾 ←$ Encaps(𝑝𝑘′)

𝜎 ←$ Sign(𝑠𝑘𝑆, 𝑝𝑘′||𝑐𝑡)

Verify(𝑝𝑘𝑆, 𝜎, 𝑝𝑘′′||𝑐𝑡)
𝐾 ← Decaps(𝑠𝑘, 𝑐𝑡, 𝑠𝑓)

RF-Client

𝑐𝑡, 𝜎

𝑝𝑘′ ← Rand(𝑝𝑘)

Can’t verify 𝜎

Compromise scenario = {KeyGen, Verify} – The solution

Client Server

𝑝𝑘

𝑐𝑡, 𝜎, 𝑠𝑓 ← Comb(𝑠1, 𝑠2)

𝑝𝑘, 𝑠𝑘 ←$ KeyGen(1𝜆)

𝑐𝑡, 𝐾 ←$ Encaps(𝑝𝑘′′)

𝜎 ←$ Sign(𝑠𝑘𝑆, 𝑝𝑘′′||𝑐𝑡)

RF-Client

𝑐𝑡, 𝜎, 𝑠2

𝑝𝑘′ ← Rand(𝑝𝑘, s1) 𝑝𝑘′′ ← Rand(𝑝𝑘′, s2)

Verify(𝑝𝑘𝑆, 𝜎, 𝑝𝑘′′||𝑐𝑡)
𝑝𝑘′′ ← Rand(𝑝𝑘, s𝑓)



34

PQ SR-AKE – Rerandomizable KEM :

Syntax

‘‘Normal’’ KEM

𝑝𝑘, 𝑠𝑘 ←$ KeyGen(1𝜆)

𝑐𝑡, 𝐾 ←$ Encaps 𝑝𝑘
𝐾 ← Decaps(𝑠𝑘, 𝑐𝑡)

Correctness

𝐾0 = 𝐾1

Rerandomizable KEM

𝑝𝑘, 𝑠𝑘 ←$ KeyGen(1𝜆)

𝑐𝑡, 𝐾 ←$ Encaps 𝑝𝑘
𝐾 ← Decaps(𝑠𝑘, 𝑐𝑡, 𝑠𝑒𝑒𝑑)

𝑝𝑘′ ← Rand(𝑝𝑘, 𝑠𝑒𝑒𝑑)
𝑠𝑒𝑒𝑑′ ← Comb(𝑠𝑒𝑒𝑑1, 𝑠𝑒𝑒𝑑2)

Usual correctness

KeyGen

1𝜆

Encaps

𝑝𝑘

Decaps

𝑠𝑘

𝑐𝑡

𝐾0 𝐾1

𝐾0 = 𝐾1

1𝜆

Encaps Decaps

𝑠𝑘
𝑐𝑡

𝐾0 𝐾1

Rand

𝑝𝑘

𝑝𝑘′

𝑠𝑒𝑒𝑑
KeyGen

Comb correctness

KeyGen 1𝜆

Rand

Rand

Comb

Rand

𝑠1

𝑠2

𝑝𝑘0
′′ = 𝑝𝑘1

′′

𝑝𝑘

𝑝𝑘

𝑝𝑘′

𝑝𝑘0
′′ 𝑝𝑘1

′′

𝑠𝑐
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PQ SR-AKE – Rerandomizable KEM :

Security definitions : IND-CPA too weak, IND-CCA too strong => RIND-CPA !

RIND-CPA

𝑝𝑘, 𝑠𝑘 ←$ KeyGen 1𝜆

𝑐𝑡, 𝐾0 ←$  Encaps 𝑝𝑘

𝐾1 ←$ 𝒦

𝑏 ←$ 0,1

𝒜 wins iff 𝑏 = 𝑑

𝓒

IND-CPA

𝓐

𝑝𝑘, 𝑐𝑡, 𝐾𝑏

𝑑

𝑝𝑘, 𝑠𝑘 ←$ KeyGen 1𝜆

𝒜 wins iff 𝑏 = 𝑑 and 𝑅𝑎𝑛𝑑 𝑝𝑘, 𝑠𝑒𝑒𝑑 = 𝑝𝑘′

𝓒 𝓐

𝑝𝑘

𝑑, 𝑠𝑒𝑒𝑑

𝑐𝑡, 𝐾0 ←$  Encaps 𝑝𝑘′

𝐾1 ←$ 𝒦

𝑏 ←$ 0,1

𝑝𝑘′

𝑐𝑡, 𝐾𝑏

Client

+
Server

Client

Server

RIND-CPA-b
Send 𝑠𝑒𝑒𝑑
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PQ SR-AKE – Rerandomizable KEM :

Security definitions : for exfiltration-resilience

RCombIND

𝑠𝑒𝑒𝑑 ←$ 𝑆𝑒𝑒𝑑
𝑝𝑘0 ← Rand(𝑝𝑘𝐴, 𝑠𝑒𝑒𝑑)

𝑝𝑘1, 𝑠𝑘1 ←$ KeyGen 1𝜆

𝒜 wins iff 𝑏 = 𝑑

𝓒

RandIND

𝓐

𝑝𝑘𝑏

𝑑

𝑝𝑘𝐴

𝑠𝑒𝑒𝑑 ←$ 𝑆𝑒𝑒𝑑
𝑠0 ← Comb(𝑠𝑒𝑒𝑑𝐴, 𝑠𝑒𝑒𝑑)

𝑠1 ←$ 𝑆𝑒𝑒𝑑

𝒜 wins iff 𝑏 = 𝑑

𝓒 𝓐

𝑠𝑏

𝑑

𝑠𝑒𝑒𝑑𝐴
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PQ SR-AKE – Rerandomizable KEM :

Instanciations

Lattice-based

Global parameters : g

KeyGen 1𝜆 → 𝑥, 𝑔𝑥

Encaps 𝑝𝑘 → (𝑔𝑟 , 𝑝𝑘𝑟)

Rand 𝑝𝑘, 𝑠𝑒𝑒𝑑 → 𝑝𝑘𝑠𝑒𝑒𝑑

Comb 𝑠0, 𝑠1 → 𝑠0 × 𝑠1

Decaps 𝑠𝑘, 𝑐𝑡, 𝑠𝑒𝑒𝑑 → 𝑐𝑡𝑠𝑘×𝑠𝑒𝑒𝑑

DH-based

Global parameters : A

KeyGen 1𝜆 → 𝑠, 𝑒 , 𝐴𝑠 + 𝑒

Encaps 𝑝𝑘 → (𝑐𝑡, 𝐾)

Rand 𝑝𝑘, (𝑠′, 𝑒′) → 𝑝𝑘 + 𝐴𝑠′ + 𝑒′

Comb 𝑠0, 𝑒0 , (𝑠1, 𝑒1) → (𝑠0 + 𝑠1, 𝑒0 + 𝑒1)

Decaps 𝑠𝑘, 𝑐𝑡, 𝑠𝑒𝑒𝑑 → UsualDecaps(𝑠𝑘 + 𝑠𝑒𝑒𝑑, 𝑐𝑡)
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PQ SR-AKE – Security definitions :

Definitions (proofs pen-and-paper + cryptoverif)

Main goal

Exfiltration-resilience

Security preservation

More efficient !

AKE with RFs : usual security with malicious RF

Authenticating / Securing : security preservation

Exfiltration-resilience

Obliviousness
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PQ SR-AKE – Security definitions :

AKE with RFs

Usual AKE : NewInstance, Send, Reveal, Corrupt, Test

Step 1 – authentication

EUF-CMA signature

Not same SID (initiator)

Step 2 – key secrecy

Not same SID (responder)

RIND-CPA KEM

The proof :

Setup-free RFs : we can ignore them !

Additionnal powers
NewRF : RF party creation

SetupRF : link RFs to I / R
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PQ SR-AKE – Security definitions :

Security preservation (authenticating and securing)

Step 1 – authenticating

RF re-checks signature

Rerand. => not same SID I

Step 2 – securing

Identical to previously

(need to replace pk’ honest)

The proof :

+ Attacker can’t view messages between subverted parties and their RFs

Usual AKE : NewInstance, Send, Reveal, Corrupt, Test

Additionnal power : SetupRF, SetCode subverted parties
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PQ SR-AKE – Security definitions :

Exfiltration-resilience / Obliviousness

Replace pk’ by honest one

Needs to delete sk and pk use on I => Replace K on I by partner R

The proof (both cases) :

Advantage Obliviousness < Advantage Exf-Res in reality

+ Attacker can’t view messages between subverted parties and their RFs

Oracles : NewInstance, Send, Reveal, SetupRF

Exfiltration-resilience : SetCode LoR ( transcripts)

Obliviousness : modified NewInstance LoR
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Conclusion :

Expand compromise scenario

Example : adapt double-layer encryption (setup-free RF)

Get close to real TLS

Legacy fields : version, session IDs, …

Nonces

Already considered (not fully) in 2020 paper

Develop solutions to trust algorithms

Watchdogs, implementation verification, …
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Thank you for your attention !
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