
PQ SR-AKE : Subversion-resilient key-exchange in

the post-quantum world

10 / 07 / 2025

Kevin DUVERGER, Pierre-Alain FOUQUE, Charlie JACOMME,

Guilhem NIOT, Cristina ONETE

Journée 5 - Axe 2 - PEPR-PQ TLS

Speaker – Kevin DUVERGER

2

Contents :

Subversions

Subversions ?

Watchdogs

Reverse firewalls

Subversion-resilient AKE
Unauthenticated DH SR-AKE

Authenticated DH SR-AKE

PQ SR-AKE

Design choices

Rerandomizable KEM

Security definitions

The protocol

3

Introduction :

Cryptographic primitives and protocols

For humans

Specifications Implementations

Possible bugs

Difference between ideal world (specification) and real world (implementation)

For machines

Black box

4

Introduction :

Intentional bugs Undetectable

Usage exclusivity

They are real !

Export Laws 1990’s

Dual EC – 2013

XZ Utils – 2024

Subversion

attacks

Leak information

Intelligence agencies

Force backdoors

Mass surveillance

5

Introduction :

Algorithms are idealized !

Need to consider implementation vs specification in models !

IND-CPA ROR – KEM

𝑝𝑘, 𝑠𝑘 ←$ KeyGen 1𝜆

𝑐𝑡, 𝐾0 ←$ Encaps 𝑝𝑘

𝐾1 ←$ 𝒦

𝑏 ←$ 0,1
𝑑 ← 𝒜(𝑝𝑘, 𝑐𝑡, 𝐾𝑏)

𝒜 wins iff 𝑏 = 𝑑

EUF-CMA – SIGN

𝑝𝑘, 𝑠𝑘 ←$ KeyGen 1𝜆

𝑚∗, 𝜎∗ ← 𝒜oSign(.)(𝑝𝑘)

𝒜 wins iff

Verify 𝑝𝑘, 𝜎∗, 𝑚∗ = 1 ∧ 𝑚∗ ∉ ℒ

oSign 𝑚

𝜎 ←$ Sign 𝑠𝑘, 𝑚
ℒ ← ℒ ∪ {𝑚}

return 𝜎

6

Subversions – Attacks :

Subversions : similar to steganography on cryptographic elements

7

Subversions – Attacks :

Starting point : subliminal channels, Gustavus J. Simmons, 1980’s

Prisoner 1 Prisoner 2Warden

𝑚0 𝑚′0

𝑚1𝑚′1

𝑚 || Sign(𝑠𝑘𝑅, 𝑚, 𝑟)

Attack : needs GetRandom 𝜎, 𝑠𝑘 → 𝑟

𝜎 = Sign(𝑠𝑘𝑅, 𝑚, 𝑚∗)

Prisoner 1 Prisoner 2Warden
𝑚, 𝜎 𝑚, 𝜎

GetRandom 𝜎, 𝑠𝑘𝑅 → 𝑚∗

Warden Wants plaintext

Prisoners Want integrity

Examples : Ong-Schnorr-Shamir / ElGamal

OK

𝑝 ←$ RandomPrimeGen(1𝜆)

8

Subversions – Attacks :

Kleptography, Young and Yung, 1990’s

Subverted RSA KeyGen

Dec 𝑒, 𝑠𝑘𝑁𝑆𝐴 → 𝑝

NSA

Breaks all security

𝑞 ←$ RandomPrimeGen(1𝜆)

𝑛 ← 𝑝 × 𝑞

𝑑 =⊥

𝑒 ← Enc(𝑝𝑘𝑁𝑆𝐴, 𝑝)

𝑑 ← 𝑒−1 mod 𝜑(𝑛)

yes
Output : 𝑝𝑘, 𝑠𝑘 ← (𝑛, 𝑒 , 𝑑)

!

no

9

Subversions – Attacks :

Algorithm Substitution Attacks (2014 – Now)

Input trigger Rejection sampling

yes no

𝜎 ← 𝑠𝑘 𝜎 ← Sign(𝑠𝑘, 𝑚)

෫Sign

𝑠𝑘, 𝑚

𝜎

෫Sign

𝑠𝑘, 𝑚

𝜎

Exclusivity : encrypt, Undetectability : for later

𝑃 𝜎𝑖

𝜎𝑖 ← DeterminsticSign(𝑠𝑘, 𝑚, 𝑟𝑖)

no

yes

𝑖 + +

P example :
𝜎 −1 = 𝑠𝑘[𝑗]

(𝑗 + +)

𝑚 = 𝑚∗

!

!

10

Subversions – Real world attacks :

Edward Snowden – Dual EC DRBG – 2013

𝑠0 ← 𝑠𝑒𝑒𝑑 𝑠1 ← 𝑠0𝑃. 𝑥 𝑠2 ← 𝑠1𝑃. 𝑥 𝑠3 ← 𝑠2𝑃. 𝑥 𝑠4 ← 𝑠3𝑃. 𝑥 …

Global parameters : 𝑃, 𝑄

𝑟1 ← 𝑠1𝑄. 𝑥 𝑟2 ← 𝑠2𝑄. 𝑥 𝑟3 ← 𝑠3𝑄. 𝑥 𝑟4 ← 𝑠4𝑄. 𝑥

What if 𝑃 = 𝑒𝑄 ?

𝑒 × 𝑠𝑖𝑄 = 𝑠𝑖𝑃

NSA (only one to know 𝑒)

𝑟𝑖 𝑠𝑖+1𝑠𝑖𝑄 𝑠𝑖𝑃. 𝑥

2 possible y

11

Subversions – Watchdogs :

Deterministic watchdog (RSA encryption) Probabilistic (RSA keygen)

Specification

Implementation

𝑐1 𝑐2 … 𝑐∗

𝑐1 𝑐2 … 𝑐𝑘

Offline watchdogs = test before production – Blackbox testing

𝑥𝑖 = 𝑝𝑘𝑖 , 𝑚𝑖 ←$ (𝒫𝒦 × ℳ)

𝑥1

𝑥1

𝑥2 … 𝑥𝑘

𝑥2
… 𝑥𝑘

Watchdog

𝑥𝑖

𝑥𝑖

Im
p

le
m

e
n

ta
ti

o
n

Watchdog

𝑠𝑒𝑒𝑑1

𝑠𝑒𝑒𝑑2

𝑠𝑒𝑒𝑑3

…

𝑠𝑒𝑒𝑑𝑘

𝑝𝑘1, 𝑠𝑘1

𝑝𝑘2, 𝑠𝑘2

𝑝𝑘3, 𝑠𝑘3

…

𝑝𝑘2, 𝑠𝑘2

12

Subversions – Watchdogs :

Online watchdog = test always – Blackbox testing

Input trigger (signature)

Time bomb (can detect too)

yes
𝜎

𝜎

𝑠𝑘, 𝑚 𝑚 = 𝑚∗

no

ℳ = ∞
↓

P(detect) = 0

Online watchdog

m ← challenge∗ 𝑚

𝜎 ← 𝑠𝑘𝑆

Verify(𝑝𝑘𝑆, 𝜎, 𝑚)

S𝓐

alg(𝑖𝑛𝑝𝑢𝑡1)

𝑖𝑛𝑝𝑢𝑡1

𝑜𝑢𝑡𝑝𝑢𝑡1

𝑡 = 1
clean

… alg(𝑖𝑛𝑝𝑢𝑡𝑡∗−1)

𝑖𝑛𝑝𝑢𝑡𝑡∗−1

𝑜𝑢𝑡𝑝𝑢𝑡𝑡∗−1

𝑡 = 𝑡∗ − 1
clean

alg(𝑖𝑛𝑝𝑢𝑡𝑡∗)

𝑖𝑛𝑝𝑢𝑡𝑡∗

𝑜𝑢𝑡𝑝𝑢𝑡𝑡∗

𝑡 = 𝑡∗

bad
…alg(𝑖𝑛𝑝𝑢𝑡𝑡∗+1)

𝑖𝑛𝑝𝑢𝑡𝑡∗+1

𝑜𝑢𝑡𝑝𝑢𝑡𝑡∗+1

𝑡 = 𝑡∗ + 1
bad

13

Subversions – Watchdogs :

Blackbox testing NOT SUFFICIENT – Fine grain testing

Rejection sampling

෫Algo

input

out

𝑃 out𝑖

out𝑖 ← DeterminsticAlg(input, 𝑟𝑖)

no

yes

𝑖 + +

Undetectable for any blackbox test

Solution (KeyGen example)

Trusted amalgamation

Protected KeyGen (double splitting)

Split-program model RandGen dKeyGen

Trusted ∘

KeyGen = dKeyGen ∘ RandGen = dKeyGen 𝑅𝑎𝑛𝑑𝐺𝑒𝑛

RG0 RG1 RandExtract dKeyGen

𝐾𝑒𝑦𝐺𝑒𝑛() = 𝑑𝐾𝑒𝑦𝐺𝑒𝑛 𝑅𝑎𝑛𝑑𝐸𝑥𝑡𝑟𝑎𝑐𝑡 𝑅𝐺0(), 𝑅𝐺1()

…

14

Subversions – Reverse firewalls :

Watchdogs : limits + not adapted to protocols → reverse firewalls

Firewall Reverse firewall

𝓐Alice (safe) Alice
bad 𝑚

𝓐

2014 – Illya Mironov, Noah-Stephens Davidowitz

clean 𝑚′

RF 1

Alice
bad 𝑚(0)

RF 2

bad 𝑚(1) bad 𝑚(2)

RF i

bad 𝑚(𝑖−1) clean 𝑚(𝑖) …

RF n

clean
𝑚(𝑛−1) clean 𝑚′

𝓐

Stackable RFs : ≥ 𝟏 good RF → clean output

15

Subversions – Reverse firewalls :

RF – Example (+ ElGamal instanciation)

Alice Bob

𝑝𝑘, 𝑠𝑘 ←$ KeyGen(1𝜆)𝑝𝑘

𝑐𝑡 ←$ Enc(𝑝𝑘, 𝑚) 𝑐𝑡

𝑚 ← Dec(𝑠𝑘, 𝑐𝑡)

𝑝𝑘

𝑐𝑡

RF-Alice RF-Bob

RandPK(𝑝𝑘)

RandCT(𝑐𝑡) CorrCT(𝑐𝑡)

KeyGen(1𝜆) ∶ 𝑥, 𝑔𝑥 Enc 𝑝𝑘, 𝑚 ∶ 𝑔𝑟0 , 𝑚 × 𝑝𝑘𝑟0 Dec 𝑠𝑘, 𝑐𝑡 ∶ 𝑐𝑡1/𝑐𝑡0
𝑠𝑘

RandCT 𝑐𝑡 ∶ (𝑔𝑟1 × 𝑐𝑡0, 𝑝𝑘𝑟1 × 𝑐𝑡1) RandPK 𝑝𝑘 ∶ 𝑝𝑘𝑟2 CorrCT 𝑐𝑡 ∶ (𝑐𝑡0
𝑟2 , 𝑐𝑡1)

𝑝𝑘
𝑝𝑘

𝑐𝑡

16

Subversions – Reverse firewalls :

RF – Properties

∎ : Honest, ∎ : Malicious, ∎ : Subverted

Functionality maintaining

Alice RF-A Bob

Still correct ?

RF not trustworthy

Alice RF-A Bob

Security broken ?

Security preserving

Alice RF-A Bob

Still security for Alice ?

Exfiltration-resilience

Alice RF-A Bob

Can 𝓐 distinguish ?

0.5 Imlem

0.5 Spec

𝓐 𝓐

𝓐 𝓐

17

Subversion-resilient AKE – Example 1 :

2015 – Secure Transmission with Reverse Firewalls

To protect : unauthenticated DH

Alice Bob

𝑔𝑎

𝑔𝑏

+ Authentication + Message exchange

Unique signature + sign other thing Unique symmetric encryption

Studied in other solution

18

Subversion-resilient AKE – Example 1 :

2015 – Secure Transmission with Reverse Firewalls – Protecting Alice

The idea

Alice Bob

𝐴 ← 𝑔𝑎

𝐵 ← 𝑔𝑏

RF-Alice

𝐴′ ← 𝐴𝛼 = 𝑔𝑎𝛼

𝐵

𝐾𝐴 ← 𝑔𝑎𝑏 𝐾𝐵 ← 𝑔𝑎𝛼𝑏

𝐾𝐴 ≠ 𝐾𝐵

Alice Bob

𝐴 ← 𝑔𝑎

𝐵 ← 𝑔𝑏

RF-Alice

𝐴′ ← 𝐴𝛼 = 𝑔𝑎𝛼

𝐵′ ← 𝐵𝛼 = 𝑔𝛼𝑏

𝐾𝐴 ← 𝑔𝑎𝛼𝑏 𝐾𝐵 ← 𝑔𝑎𝛼𝑏

Another issue

Alice Bob

𝐴 ← 1

𝐵 ← 𝑔𝑏

RF-Alice

𝐴′ ← 𝐴𝛼 = 1

𝐵′ ← 𝐵𝛼 = 𝑔𝛼𝑏

𝐾𝐴 = 1 𝐾𝐵 ← 1

Bad K 𝐴 = 1

no

yes

Behave normally

Send another A

19

Subversion-resilient AKE – Example 1 :

2015 – Secure Transmission with Reverse Firewalls – Protecting Bob

A first idea that does not work : RF-Bob = RF-Alice

Alice Bob

𝐴 ← 𝑔𝑎

𝐵 ← 𝑔𝑏

RF-Alice

𝐴′′ ← 𝐴′𝛽

𝐵′′ ← 𝐵′𝛼
𝐾𝐴 ← 𝑔𝑎𝛼𝑏𝛽 𝐾𝐵 ← 𝑔𝑎𝛼𝑏𝛽

The solution

RF-Bob

𝐵′ ← 𝐵𝛽

𝐴′ ← 𝐴𝛼

Rejection sampling on b :
𝐻 𝐾 = 0 … 0 || 𝑟𝑎𝑛𝑑

Alice BobRF-Alice RF-Bob

𝐶 ← Com(𝑔𝑏)C′ ← Rand Maul 𝐶, 𝛽

𝐴 ← 𝑔𝑎 𝐴′′ ← 𝐴′𝛽𝐴′ ← 𝐴𝛼

𝑂 ← Open(𝐶)𝑂′ ← Open(𝐶′)𝑂′′ ← 𝑂𝑝𝑒𝑛(𝐶′′)

C′′ ← Rand Maul 𝐶, 𝛼

Ideas (but bad) : randomizing K, Bob starting the protocol

20

Subversion-resilient AKE – Example 1 :

2015 – Secure Transmission with Reverse Firewalls – Study

Alice BobRF-Alice RF-Bob

Functionality maintaining

Leaks first key bit
Unprotectable

Functionality maintaining subversions

Bob
𝐾 0
= 1

yes

no

STOP

GO

Security preservation

Exfiltration-resilience

𝐶 ← Com(𝑔𝑏)C′ ← Rand Maul 𝐶, 𝛽

𝐴 ← 𝑔𝑎 𝐴′′ ← 𝐴′𝛽𝐴′ ← 𝐴𝛼

𝑂 ← Open(𝐶)𝑂′ ← Open(𝐶′)𝑂′′ ← 𝑂𝑝𝑒𝑛(𝐶′′)

C′′ ← Rand Maul 𝐶, 𝛼

21

Subversion-resilient AKE – Example 2 :

2020 – Designing Reverse Firewalls for the Real World

To protect : server-authenticated DH (TLS)

Client Server

𝑔𝑎

𝑔𝑏, Sign(𝑠𝑘𝐵, 𝑔𝑎||𝑔𝑏)

No commitment scheme

No pairings

1 round trip

Reinforced models

Only client-side (but better for NSA)

22

Subversion-resilient AKE – Example 2 :

2020 – Designing Reverse Firewalls for the Real World – Handshake

Previous idea doesn’t work
A’ and B unknown to Client

Client Server

𝐴 ← 𝑔𝑎

𝐵 ← 𝑔𝑏 , 𝜎

RF-Client

𝐴′ ← 𝐴𝛼

𝐵′ ← 𝐵𝛼 , 𝜎

𝜎 ←$ Sign(𝑠𝑘𝐵, 𝐴′ | 𝐵

𝑝𝑘𝐵 𝑝𝑘𝐵 𝑠𝑘𝐵 , 𝑝𝑘𝐵

Verify(𝑝𝑘𝐵, 𝜎, 𝐴′ | 𝐵

Can’t verify 𝜎

Solution

Client Server

𝐴 ← 𝑔𝑎

𝐵 ← 𝑔𝑏, 𝜎, 𝛾

RF-Client

𝐴′ ← 𝐴𝛼

𝐵, 𝜎, 𝛾′ ← 𝛾 × 𝛼

𝜎 ←$ Sign(𝑠𝑘𝐵, 𝐴′𝛾
 | 𝐵

𝑝𝑘𝐵 𝑝𝑘𝐵 𝑠𝑘𝐵 , 𝑝𝑘𝐵

Verify(𝑝𝑘𝐵 , 𝜎, 𝐴′𝛾
 | 𝐵

Verify(𝑝𝑘𝐵, 𝜎, 𝐴𝛾′ | 𝐵

𝐾𝐵 ← 𝐴′𝑏×𝛾

Ideas : randomizing signature content (bad), RF reveal exponent to client (maybe good)

𝐾𝐴 ← 𝐵𝑎×𝛾′

23

Subversion-resilient AKE – Example 2 :

2020 – Designing Reverse Firewalls for the Real World – Message exchange

Previous paper

« Functionality maintaining subversions » with unique encryption, cheat :

Dec Enc 𝑚, 𝑘 , 𝑘 ≠ 𝑚 : not functionality maintaining

Encrypt messages with attacker key

Rejection sampling on 𝑚 (add spaces)

Input trigger

Excludes

Solution : double-layered encryption

Client & Server 𝐾, 𝐾′

RFs 𝐾′

RFs can rerandomize
SymEnc with 𝐾′

Client OK, RF BAD : layer 1

Client BAD, RF OK : layer 2

24

Subversion-resilient AKE – Example 2 :

2020 – Designing Reverse Firewalls for the Real World – Message exchange

Client Server

𝐴𝑖 ← 𝑔𝑎𝑖

𝐵1, 𝐵2, 𝜎, 𝛾1, 𝛾2

RF-Client

𝐴1
𝛼1 , 𝐴2

𝛼2 , Enc(𝑝𝑘𝑅𝐹 , 𝑎2 × 𝛼2)

𝐵1, 𝐵2, 𝜎, 𝛾1
′ , 𝛾2

′

𝜎 ←$ Sign(𝑠𝑘𝐵, 𝐴𝑖
′𝛾𝑖| 𝐵𝑖

𝑝𝑘𝐵, 𝑝𝑘𝑅𝐹 𝑝𝑘𝐵, 𝑠𝑘𝑅𝐹 , 𝑝𝑘𝑅𝐹 𝑠𝑘𝐵 , 𝑝𝑘𝐵

Verify 𝑝𝑘𝐵, 𝜎, … , 𝛾𝑖
′ = 𝛾𝑖 × 𝛼𝑖Verify(𝑝𝑘𝐵 , 𝜎, 𝐴𝑖

𝛾𝑖
′

||𝐵𝑖)

𝐾1 ← 𝐴1
′𝑏1×𝛾1 , 𝐾2 ← 𝐴2

′𝑏2×𝛾2

𝐾1 ← 𝐵1
𝑎1×𝛾1

′

, 𝐾2 ← 𝐵2
𝑎2×𝛾2

′

𝐴1, 𝐴2, c ← Enc(𝑝𝑘𝑅𝐹 , 𝑎2)

Dec 𝑠𝑘𝑅𝐹 , 𝑐 → 𝑎2

𝐾2 ← 𝐵2
𝑎2×𝛼2×𝛾2

𝐶 ← Enc(𝐾1, 𝑚)

Client

𝑟 ←$ ℛ
𝑘𝑖 ← 𝐻𝑖(𝑟||𝐾2)

𝐶′ ← 𝑘1 ⊕ 𝐶
𝑡 ← MAC(𝑘2, 𝐶′||𝑟)

RF-Client

𝑟′ ←$ ℛ
𝑘𝑖 ← 𝐻𝑖(𝑟||𝐾2)
𝑘𝑖

′ ← 𝐻𝑖(𝑟′||𝐾2)
𝐶′′ ← 𝑘1 ⊕ 𝑘1

′ ⊕ 𝐶′
𝑡′ ← MAC(𝑘2

′ , 𝐶′′||𝑟′)

𝑟, 𝐶′, 𝑡 Server
𝑘𝑖

′ ← 𝐻𝑖(𝑟′||𝐾2)
𝐶 ← 𝑘1

′ ⊕ 𝐶′′

𝑟′, 𝐶′′, 𝑡′
𝑚 ← Dec(𝐾1, 𝐶)

* Of course, MACs are verified

25

Subversion-resilient AKE – Example 2 :

2020 – Designing Reverse Firewalls for the Real World – Exfiltration

Before
𝓐 must

find 𝑏

But spec ideal : real world => reference implementation

Client : 𝑏 ←$ {0,1}
𝑏 = 0 : implem

𝑏 = 1 : spec

RF

After
𝓐 must

find 𝑏

Client : 𝑏 ←$ {0,1}
𝑏 = 0 : implem 1

𝑏 = 1 : implem 2

RF

Trivial attacks : P1 does nothing, P2 honest

… but « functionality maintaining » is cheating

=> Transcript equivalence

26

PQ SR-AKE – Introduction :

Goal : same as before but for PQ TLS

Main issue : no PQ DH !

KEM

Client-authenticated KEM key-exchange

Client Server

𝑝𝑘

𝑐𝑡, 𝜎

𝑝𝑘, 𝑠𝑘 ←$ KeyGen(1𝜆)

𝑐𝑡, 𝐾 ←$ Encaps(𝑝𝑘)

𝜎 ←$ Sign(𝑠𝑘𝑆, 𝑝𝑘||𝑐𝑡)

𝑝𝑘𝑆 𝑝𝑘𝑆, 𝑠𝑘𝑆

Verify(𝑝𝑘𝑆, 𝜎, 𝑝𝑘||𝑐𝑡)
𝐾 ← Decaps(𝑠𝑘, 𝑐𝑡)

𝑘 → KDF(𝐾)

27

PQ SR-AKE – Design choices :

First choice : compromise scenario

Before our paper

0 1

Fully subvertedNot subverted

With our paper

0 1Some algos

subverted

Most algos

subverted

Compromise scenario : subset of subvertible algorithms

More efficient protocols (no useless protections)

Spectrum of protocols (for each trust scenario)

28

PQ SR-AKE – Design choices :

Second choice : setup-free RFs

2015 – Secure Transmission with Reverse Firewalls RF has no (𝑝𝑘𝑅𝐹 , 𝑠𝑘𝑅𝐹)

Setup free : RF with no (𝑝𝑘𝑅𝐹, 𝑠𝑘𝑅𝐹)

2020 – Designing Reverse Firewalls for the Real World RF has (𝑝𝑘𝑅𝐹 , 𝑠𝑘𝑅𝐹)

Easier to deploy

Naturally stackable RFs

Goal : only setup-free RFs !

29

PQ SR-AKE – Design choices :

Difficulty 1 : signatures

Client knows 𝑥 Client doesn’t know 𝑥

Change 𝑥 to go back to other case

Verification : RF must check it

Client Server

𝑚1

𝑚2 𝜎 ←$ Sign(𝑠𝑘𝑆, 𝑥)

RF-Client

𝑚1
′

𝑚2
′

Creation : rerandomizable / unique signature scheme

30

PQ SR-AKE – Design choices :

Difficulty 2 : Decaps and KDF

Could choose 𝑘 independent of handshake

Client Server

𝑝𝑘

𝑐𝑡, 𝜎

𝑝𝑘, 𝑠𝑘 ←$ KeyGen(1𝜆)

𝑐𝑡, 𝐾 ←$ Encaps(𝑝𝑘)

𝜎 ←$ Sign(𝑠𝑘𝑆, 𝑝𝑘||𝑐𝑡)
Verify(𝑝𝑘𝑆, 𝜎, 𝑝𝑘||𝑐𝑡)

𝐾 ← Decaps(𝑠𝑘, 𝑐𝑡) 𝑘 → KDF(𝐾)

Existing solution : double layered encryption !

Adaptation to PQ (possible)

Setup free version ?

31

PQ SR-AKE – Design choices :

Difficulty 3 : Encaps

Easy : Rejection sampling

Client Server

𝑝𝑘

𝑐𝑡, 𝜎

𝑝𝑘, 𝑠𝑘 ←$ KeyGen(1𝜆)

𝑐𝑡, 𝐾 ←$ Encaps(𝑝𝑘)

𝜎 ←$ Sign(𝑠𝑘𝑆, 𝑝𝑘||𝑐𝑡)
Verify(𝑝𝑘𝑆, 𝜎, 𝑝𝑘||𝑐𝑡)

𝐾 ← Decaps(𝑠𝑘, 𝑐𝑡) 𝑘 → KDF(𝐾)

Hard : Unauthenticated client

Issue of (some) KEMs : server can unilaterally choose K !

Solution : commitment like 2015, does not work for all KEMs + inefficient !

32

PQ SR-AKE – The protocol :

Going back to compromise scenarios

Compromise scenario = ∅ : original protocol

Client Server

𝑝𝑘

𝑐𝑡, 𝜎

𝑝𝑘, 𝑠𝑘 ←$ KeyGen(1𝜆)

𝑐𝑡, 𝐾 ←$ Encaps(𝑝𝑘)

𝜎 ←$ Sign(𝑠𝑘𝑆, 𝑝𝑘||𝑐𝑡)
Verify(𝑝𝑘𝑆, 𝜎, 𝑝𝑘||𝑐𝑡)

𝐾 ← Decaps(𝑠𝑘, 𝑐𝑡)

Compromise scenario = {Verify} : RF re-checks signature

RF-Client

𝑐𝑡, 𝜎

𝑝𝑘

Client Server

𝑝𝑘

𝑐𝑡, 𝜎

𝑝𝑘, 𝑠𝑘 ←$ KeyGen(1𝜆)
𝑐𝑡, 𝐾 ←$ Encaps(𝑝𝑘)

𝜎 ←$ Sign(𝑠𝑘𝑆, 𝑝𝑘||𝑐𝑡)

Verify(𝑝𝑘𝑆, 𝜎, 𝑝𝑘||𝑐𝑡)
𝐾 ← Decaps(𝑠𝑘, 𝑐𝑡)

RF-Client

𝑐𝑡, 𝜎

𝑝𝑘

Verify(𝑝𝑘𝑆, 𝜎, 𝑝𝑘||𝑐𝑡)

Client

33

PQ SR-AKE – The protocol :

Our compromise scenario – Final protocol

Compromise scenario = {KeyGen, Verify} – A first solution

Server

𝑝𝑘

𝑐𝑡′ = Unrand(𝑐𝑡), 𝜎

𝑝𝑘, 𝑠𝑘 ←$ KeyGen(1𝜆)
𝑐𝑡, 𝐾 ←$ Encaps(𝑝𝑘′)

𝜎 ←$ Sign(𝑠𝑘𝑆, 𝑝𝑘′||𝑐𝑡)

Verify(𝑝𝑘𝑆, 𝜎, 𝑝𝑘′′||𝑐𝑡)
𝐾 ← Decaps(𝑠𝑘, 𝑐𝑡, 𝑠𝑓)

RF-Client

𝑐𝑡, 𝜎

𝑝𝑘′ ← Rand(𝑝𝑘)

Can’t verify 𝜎

Compromise scenario = {KeyGen, Verify} – The solution

Client Server

𝑝𝑘

𝑐𝑡, 𝜎, 𝑠𝑓 ← Comb(𝑠1, 𝑠2)

𝑝𝑘, 𝑠𝑘 ←$ KeyGen(1𝜆)

𝑐𝑡, 𝐾 ←$ Encaps(𝑝𝑘′′)

𝜎 ←$ Sign(𝑠𝑘𝑆, 𝑝𝑘′′||𝑐𝑡)

RF-Client

𝑐𝑡, 𝜎, 𝑠2

𝑝𝑘′ ← Rand(𝑝𝑘, s1) 𝑝𝑘′′ ← Rand(𝑝𝑘′, s2)

Verify(𝑝𝑘𝑆, 𝜎, 𝑝𝑘′′||𝑐𝑡)
𝑝𝑘′′ ← Rand(𝑝𝑘, s𝑓)

34

PQ SR-AKE – Rerandomizable KEM :

Syntax

‘‘Normal’’ KEM

𝑝𝑘, 𝑠𝑘 ←$ KeyGen(1𝜆)

𝑐𝑡, 𝐾 ←$ Encaps 𝑝𝑘
𝐾 ← Decaps(𝑠𝑘, 𝑐𝑡)

Correctness

𝐾0 = 𝐾1

Rerandomizable KEM

𝑝𝑘, 𝑠𝑘 ←$ KeyGen(1𝜆)

𝑐𝑡, 𝐾 ←$ Encaps 𝑝𝑘
𝐾 ← Decaps(𝑠𝑘, 𝑐𝑡, 𝑠𝑒𝑒𝑑)

𝑝𝑘′ ← Rand(𝑝𝑘, 𝑠𝑒𝑒𝑑)
𝑠𝑒𝑒𝑑′ ← Comb(𝑠𝑒𝑒𝑑1, 𝑠𝑒𝑒𝑑2)

Usual correctness

KeyGen

1𝜆

Encaps

𝑝𝑘

Decaps

𝑠𝑘

𝑐𝑡

𝐾0 𝐾1

𝐾0 = 𝐾1

1𝜆

Encaps Decaps

𝑠𝑘
𝑐𝑡

𝐾0 𝐾1

Rand

𝑝𝑘

𝑝𝑘′

𝑠𝑒𝑒𝑑
KeyGen

Comb correctness

KeyGen 1𝜆

Rand

Rand

Comb

Rand

𝑠1

𝑠2

𝑝𝑘0
′′ = 𝑝𝑘1

′′

𝑝𝑘

𝑝𝑘

𝑝𝑘′

𝑝𝑘0
′′ 𝑝𝑘1

′′

𝑠𝑐

35

PQ SR-AKE – Rerandomizable KEM :

Security definitions : IND-CPA too weak, IND-CCA too strong => RIND-CPA !

RIND-CPA

𝑝𝑘, 𝑠𝑘 ←$ KeyGen 1𝜆

𝑐𝑡, 𝐾0 ←$ Encaps 𝑝𝑘

𝐾1 ←$ 𝒦

𝑏 ←$ 0,1

𝒜 wins iff 𝑏 = 𝑑

𝓒

IND-CPA

𝓐

𝑝𝑘, 𝑐𝑡, 𝐾𝑏

𝑑

𝑝𝑘, 𝑠𝑘 ←$ KeyGen 1𝜆

𝒜 wins iff 𝑏 = 𝑑 and 𝑅𝑎𝑛𝑑 𝑝𝑘, 𝑠𝑒𝑒𝑑 = 𝑝𝑘′

𝓒 𝓐

𝑝𝑘

𝑑, 𝑠𝑒𝑒𝑑

𝑐𝑡, 𝐾0 ←$ Encaps 𝑝𝑘′

𝐾1 ←$ 𝒦

𝑏 ←$ 0,1

𝑝𝑘′

𝑐𝑡, 𝐾𝑏

Client

+
Server

Client

Server

RIND-CPA-b
Send 𝑠𝑒𝑒𝑑

36

PQ SR-AKE – Rerandomizable KEM :

Security definitions : for exfiltration-resilience

RCombIND

𝑠𝑒𝑒𝑑 ←$ 𝑆𝑒𝑒𝑑
𝑝𝑘0 ← Rand(𝑝𝑘𝐴, 𝑠𝑒𝑒𝑑)

𝑝𝑘1, 𝑠𝑘1 ←$ KeyGen 1𝜆

𝒜 wins iff 𝑏 = 𝑑

𝓒

RandIND

𝓐

𝑝𝑘𝑏

𝑑

𝑝𝑘𝐴

𝑠𝑒𝑒𝑑 ←$ 𝑆𝑒𝑒𝑑
𝑠0 ← Comb(𝑠𝑒𝑒𝑑𝐴, 𝑠𝑒𝑒𝑑)

𝑠1 ←$ 𝑆𝑒𝑒𝑑

𝒜 wins iff 𝑏 = 𝑑

𝓒 𝓐

𝑠𝑏

𝑑

𝑠𝑒𝑒𝑑𝐴

37

PQ SR-AKE – Rerandomizable KEM :

Instanciations

Lattice-based

Global parameters : g

KeyGen 1𝜆 → 𝑥, 𝑔𝑥

Encaps 𝑝𝑘 → (𝑔𝑟 , 𝑝𝑘𝑟)

Rand 𝑝𝑘, 𝑠𝑒𝑒𝑑 → 𝑝𝑘𝑠𝑒𝑒𝑑

Comb 𝑠0, 𝑠1 → 𝑠0 × 𝑠1

Decaps 𝑠𝑘, 𝑐𝑡, 𝑠𝑒𝑒𝑑 → 𝑐𝑡𝑠𝑘×𝑠𝑒𝑒𝑑

DH-based

Global parameters : A

KeyGen 1𝜆 → 𝑠, 𝑒 , 𝐴𝑠 + 𝑒

Encaps 𝑝𝑘 → (𝑐𝑡, 𝐾)

Rand 𝑝𝑘, (𝑠′, 𝑒′) → 𝑝𝑘 + 𝐴𝑠′ + 𝑒′

Comb 𝑠0, 𝑒0 , (𝑠1, 𝑒1) → (𝑠0 + 𝑠1, 𝑒0 + 𝑒1)

Decaps 𝑠𝑘, 𝑐𝑡, 𝑠𝑒𝑒𝑑 → UsualDecaps(𝑠𝑘 + 𝑠𝑒𝑒𝑑, 𝑐𝑡)

38

PQ SR-AKE – Security definitions :

Definitions (proofs pen-and-paper + cryptoverif)

Main goal

Exfiltration-resilience

Security preservation

More efficient !

AKE with RFs : usual security with malicious RF

Authenticating / Securing : security preservation

Exfiltration-resilience

Obliviousness

39

PQ SR-AKE – Security definitions :

AKE with RFs

Usual AKE : NewInstance, Send, Reveal, Corrupt, Test

Step 1 – authentication

EUF-CMA signature

Not same SID (initiator)

Step 2 – key secrecy

Not same SID (responder)

RIND-CPA KEM

The proof :

Setup-free RFs : we can ignore them !

Additionnal powers
NewRF : RF party creation

SetupRF : link RFs to I / R

40

PQ SR-AKE – Security definitions :

Security preservation (authenticating and securing)

Step 1 – authenticating

RF re-checks signature

Rerand. => not same SID I

Step 2 – securing

Identical to previously

(need to replace pk’ honest)

The proof :

+ Attacker can’t view messages between subverted parties and their RFs

Usual AKE : NewInstance, Send, Reveal, Corrupt, Test

Additionnal power : SetupRF, SetCode subverted parties

41

PQ SR-AKE – Security definitions :

Exfiltration-resilience / Obliviousness

Replace pk’ by honest one

Needs to delete sk and pk use on I => Replace K on I by partner R

The proof (both cases) :

Advantage Obliviousness < Advantage Exf-Res in reality

+ Attacker can’t view messages between subverted parties and their RFs

Oracles : NewInstance, Send, Reveal, SetupRF

Exfiltration-resilience : SetCode LoR ( transcripts)

Obliviousness : modified NewInstance LoR

42

Conclusion :

Expand compromise scenario

Example : adapt double-layer encryption (setup-free RF)

Get close to real TLS

Legacy fields : version, session IDs, …

Nonces

Already considered (not fully) in 2020 paper

Develop solutions to trust algorithms

Watchdogs, implementation verification, …

43

Thank you for your attention !

	Diapositive 1
	Diapositive 2
	Diapositive 3
	Diapositive 4
	Diapositive 5
	Diapositive 6
	Diapositive 7
	Diapositive 8
	Diapositive 9
	Diapositive 10
	Diapositive 11
	Diapositive 12
	Diapositive 13
	Diapositive 14
	Diapositive 15
	Diapositive 16
	Diapositive 17
	Diapositive 18
	Diapositive 19
	Diapositive 20
	Diapositive 21
	Diapositive 22
	Diapositive 23
	Diapositive 24
	Diapositive 25
	Diapositive 26
	Diapositive 27
	Diapositive 28
	Diapositive 29
	Diapositive 30
	Diapositive 31
	Diapositive 32
	Diapositive 33
	Diapositive 34
	Diapositive 35
	Diapositive 36
	Diapositive 37
	Diapositive 38
	Diapositive 39
	Diapositive 40
	Diapositive 41
	Diapositive 42
	Diapositive 43

