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Introduction



Introduction — Subversions
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Introduction — Reverse firewalls

llya Mironov and Noah Stephens-Davidowitz - 2014 :
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Introduction — Reverse firewalls
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Introduction — Our goals

» Bossuat et al. 2020. Designing Reverse Firewalls for the Real World
Signed DH secure (client-side) against subversion attacks

Questions
1 2
Efficiency + deployability PQ-TLS RF
3 4
New primitives Formal verification

Final goal : a protocol such that a router / vpn (that we don't trust)
can heal the key-exchange



Real world RFs



Real world RFs — Setup-freeness

Bossuat et al. 2020 — Designing Reverse Firewalls for the Real World

pks, krp pks, DkRrp, Skpp pks, sk
Alice RF Server
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Shared parameters: complicated setup !

«

Setup-free RF — A RF that shares no long-term parameters with its party




Real world RFs — Relaxing security notions
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Exfiltration-resilience is too strong !
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Security preservation = main target !




Real world RFs — Compromise scenario

[

All algorithms subverted: too strong in some cases
Might have trust in some algorithms !

Compromise scenario C — Set of algorithms that can be subverted
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Target protocol



Target protocol — The protocol

pks
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(pk, sk) 3 KeyGen(lA)
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ct,o

(ct,K) <* Encaps(pk)
o <% Sign(sks, pk||ct)

Verity(pks, o, pk||ct)
K < Decaps(sk, ct)

k < KDF(K)
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Target protocol — Protections

pks

[

|
(pk, sk) «* KeyGen(1%)

(-

pk

(ct,K) <% Encaps(pk)
o <% Sign(sks, pk||ct)

ct,o

Verify(pks, o, pk||ct)
K < Decaps(sk, ct)

k < KDF(K)

Target RF action
Verify Reverify the signature
KeyGen Rerandomize the public key
Sign Rerandomize the signature
Decaps, KDF | Double-layered encryption
Encaps Very complicated
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Target protocol — The protected protocol

Compromise scenario = {KeyGen, Verify}

pks pks pks, skg
—
L] @ =

(pk, sk) <* KeyGen(1%)

spr < Seed
pk’ < Rand(pk, sgrp)

o s, <% Seed
pk" < Rand(pk’, sg)
(ct,K) <% Encaps(pk")

ct,0,Sg g <% Sign(sks, pk"'||ct)

pk" < Rand(pk’, sp)

ct,o,sr < Combine(sgp, Sg)

pk" < Rand(pk, sr)
Verify(pks, o, pk'’||ct)
K < Decaps(sk, ct, s¢)

k < KDF(K) and MACs 14



A new primitive



New primitive — Definitions

(pk, sk) <* KeyGen(l’l)

pk’ « Rand(pk, seed)

RKEM

(ct,K) «<* Encaps(pk)

s' « Combine(sy,s5)

RIND-CPA RandIND
(pk, sk) «* KeyGen(1%)
pk' < A(pk) pka < AQ)
(ct,K,) «<* Encaps(pk’) s <% Seed
K, <*x return Rand(pk,, s)
b «*{0,1} —
d,seed < A(ct,Kp) —

K < Decaps(sk,ct, s)

A wins iff b = d and
Rand(pk, seed) = pk'

return KeyGen(1%4)
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New primitive — A DH instantiation

x 3 IFp

KeyGen(l’l) :

(pk, sk) < (g*, x)

Rand(pk, seed) :
(pk') « (pk*e?)

Combine(sq, s,) :
(s') < (51 X 52)

Encaps(pk) :
y < Fp
(ct,K) < (g7, H(pk?))

Decaps(sk, ct, seed)
(K) — (H(Ctskxseed))

Check that seed # 0 and seed # 1
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New primitive — A post-quantum instantiation

KeyGen(l’l) :
(s,e) <> 2k
(pk, sk) < (As + e, (s, e))

Rand(pk, seed = (S*,e*)) :
pk™ « As™ + e’
(pk’) < (pk + pk*)

Combine((sl, e1), (sy, ez)) ;
(s',e') « (s + 52,1 + €3)

Encaps(pk) :
u<*{0,1}
(u,v) < Kyber. Enc(pk, u)
(ct,K) < ((u,v), H(w))

Decaps((s, e), (u,v), (s* e*)) :

u < Kyber. Dec(s + 5%, (u, v))
(K) « (H(w)

* Check that seed is not too big
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Proofs (pen-and-paper + cryptoverif)



Protocol proofs — Bad RF case

d‘ Messages el

—

Usual AKE-security

Oracles : Newlnstance, Send,
Reveal, Corrupt, Test

SIGN is EUF-CMA

d Messages @ Messages’

AKE-with-RFs

+ Newlnstance1, NewRF, SetupRF
[warning] : Setup-free RFs

KEM is RIND-CPA

> AKE-with-RFs security !

KDF is a PRF
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Protocol proofs — Security preservation

Authenticating : restore authentication (lost if o not verified / pk collision)

Securing : restore key-secrecy (lost if weak pk)

E Messages Messages’ g
< > < > =

Oracles : Newlnstance1, Send, Reveal, Corrupt, Test,
SetupRF, SetCode

SIGN is EUF-CMA

KEM is RIND-CPA & RandIND > Authenticating & Securing !
KDF is a PRF
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Protocol security — Other notions

d‘ Messages =)

> - —
-— 2

Prog 1

D Messages @ Messages’

SIGN is EUF-CMA

d Messages @ Messages’

— D :Messages: :Messages:
—
A

Prog 2

Obliviousness & Exf-res !

KEM is RandIND

(o,
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Conclusion



Conclusion

1 V] 2 v
Setup-free RFs, relaxations, PQ-TLS RF for Verify and
compromise scenario Keygen
3 V 4 v
Rerandomizable KEM Cryptoverif proofs

24



Thank you for your attention !

Questions ?






C I‘yptove r|f p ro Qfs AKE-with-RFs (setup-free), authenticating, securing, obliviousness

Usual IND-CPA Authenticating + securing
Opk() : Opk() : Ideas :
Return honest pk[i] || Return honest pk{i] Fuse client + RF
OE(pk) : OE (pk) : Signature = RF signature
Return Encaps(pk) || pk honest: return (ct, rand K) PK = « given by adversary »
otherwise : return Encaps(pk)

Obliviousness
RIND-CPA
Ideas :

Oracles: Equivalence between C and C+RF fused
Oracle 1 : Opk([i]() -> pk

Oracle 2 : OE[ie](pk) -> ct
Oracle 3 : OS[ie,is](pk, seed) -> K

OS : check rand(pk, seed) = OEJ[ie].pk

Ideas: .
Can’tsend Kin OE : seed is unknown !



No malicious server — exf-res and obliviousness

GET/HTTP/1.1
Host: www.nsa.gov

User-Agent: ... Colluding

NSA server
—

GET/HTTP/1.1 l

Host: www.nsa.gov

User-agent: ... skli]




Double-layer encryption trick

How it works
One key case

D ~Messages @ Messages™
}
K

Pkrp, Skrp

$

K
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A%, ce
Two key case ,C° ).

D ~Messages @ ‘Messages™
1 1
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