ACM CCS 2025 — Taipel, Taiwan

Subversion-resilient Key-exchange in the Post-
quantum World (PQ-SRAKE)

Kevin DUVERGER, Pierre-Alain FOUQUE, Charlie JACOMME,
Guilhem NIOT, Cristina ONETE

10/ 1472025

Introduction

Introduction — Subversions

NSA

Alice Internet

Sknsa

</>"_! : @l mq,mo, ..., My :Q {mi}

1 NSA

REAL ATTACKS ! Dual EC (2013), XZ Utils (2024), ...

sk

Introduction — Reverse firewalls

llya Mironov and Noah Stephens-Davidowitz - 2014 :

Reverse firewalls (RFs)

Alice

B

Alice

B

Internet

mq,my, ..., My, ‘Q

RF

my, My, ..., My, @

Internet

m; = Rerandomize(m;,r)

Introduction — Reverse firewalls

2 m,, .. m P Mmq, .. m m. . m!
1,) k >Q 1) k: 1) k»&

Security = @ Security = @

D omy,..,m D mq,..,m my, ..., my
1,) k >Q 1) k:@ 1) k»&

Security = @ Security = @
! ml) -.-;mk . @ _> % ' ml’ ...,mk . @ _»
A

Program 1 Program 2

Introduction — Our goals

» Bossuat et al. 2020. Designing Reverse Firewalls for the Real World
Signed DH secure (client-side) against subversion attacks

Questions
1 2
Efficiency + deployability PQ-TLS RF
3 4
New primitives Formal verification

Final goal : a protocol such that a router / vpn (that we don't trust)
can heal the key-exchange

Real world RFs

Real world RFs — Setup-freeness

Bossuat et al. 2020 — Designing Reverse Firewalls for the Real World

pks, krp pks, DkRrp, Skpp pks, sk
Alice RF Server

- [-
< » <

Shared parameters: complicated setup !

«

Setup-free RF — A RF that shares no long-term parameters with its party

Real world RFs — Relaxing security notions

mq,..., m mq, ..., m
ISkI 1 k:@—» % ISkI 1 k:
A

Program 1 Program 2

9=

Exfiltration-resilience is too strong !

! !
[ety [e (@) Tl o

Security = € Security = @

Security preservation = main target !

Real world RFs — Compromise scenario

[

All algorithms subverted: too strong in some cases
Might have trust in some algorithms !

Compromise scenario C — Set of algorithms that can be subverted

v, O O 9 o 0000
ml) mz; m3) m4 R (m:,l, mlz, mé, m:} mli m2) m3) m4 R (m:’]_, m’2’ m’3’ mil-)
@(ml,mz,mg,m4) ml,@(mz,m3),m4
Inefficient ! Better !

10

Target protocol

Target protocol — The protocol

pks

[

(pk, sk) 3 KeyGen(lA)

g
=~

)
W
=~

)

(-

ct,o

(ct,K) <* Encaps(pk)
o <% Sign(sks, pk||ct)

Verity(pks, o, pk||ct)
K < Decaps(sk, ct)

k < KDF(K)

12

Target protocol — Protections

pks

[

|
(pk, sk) «* KeyGen(1%)

(-

pk

(ct,K) <% Encaps(pk)
o <% Sign(sks, pk||ct)

ct,o

Verify(pks, o, pk||ct)
K < Decaps(sk, ct)

k < KDF(K)

Target RF action
Verify Reverify the signature
KeyGen Rerandomize the public key
Sign Rerandomize the signature
Decaps, KDF | Double-layered encryption
Encaps Very complicated

13

Target protocol — The protected protocol

Compromise scenario = {KeyGen, Verify}

pks pks pks, skg
—
L] @ =

(pk, sk) <* KeyGen(1%)

spr < Seed
pk’ < Rand(pk, sgrp)

o s, <% Seed
pk" < Rand(pk’, sg)
(ct,K) <% Encaps(pk")

ct,0,Sg g <% Sign(sks, pk"'||ct)

pk" < Rand(pk’, sp)

ct,o,sr < Combine(sgp, Sg)

pk" < Rand(pk, sr)
Verify(pks, o, pk'’||ct)
K < Decaps(sk, ct, s¢)

k < KDF(K) and MACs 14

A new primitive

New primitive — Definitions

(pk, sk) <* KeyGen(l’l)

pk’ « Rand(pk, seed)

RKEM

(ct,K) «<* Encaps(pk)

s' « Combine(sy,s5)

RIND-CPA RandIND
(pk, sk) «* KeyGen(1%)
pk' < A(pk) pka < AQ)
(ct,K,) «<* Encaps(pk’) s <% Seed
K, <*x return Rand(pk,, s)
b «*{0,1} —
d,seed < A(ct,Kp) —

K < Decaps(sk,ct, s)

A wins iff b = d and
Rand(pk, seed) = pk'

return KeyGen(1%4)

16

New primitive — A DH instantiation

x 3 IFp

KeyGen(l’l) :

(pk, sk) < (g*, x)

Rand(pk, seed) :
(pk') « (pk*e?)

Combine(sq, s,) :
(s') < (51 X 52)

Encaps(pk) :
y < Fp
(ct,K) < (g7, H(pk?))

Decaps(sk, ct, seed)
(K) — (H(Ctskxseed))

Check that seed # 0 and seed # 1

17

New primitive — A post-quantum instantiation

KeyGen(l’l) :
(s,e) <> 2k
(pk, sk) < (As + e, (s, e))

Rand(pk, seed = (S*,e*)) :
pk™ « As™ + e’
(pk’) < (pk + pk*)

Combine((sl, e1), (sy, ez)) ;
(s',e') « (s + 52,1 + €3)

Encaps(pk) :
u<*{0,1}
(u,v) < Kyber. Enc(pk, u)
(ct,K) < ((u,v), H(w))

Decaps((s, e), (u,v), (s* e*)) :

u < Kyber. Dec(s + 5%, (u, v))
(K) « (H(w)

* Check that seed is not too big

18

Proofs (pen-and-paper + cryptoverif)

Protocol proofs — Bad RF case

d‘ Messages el

—

Usual AKE-security

Oracles : Newlnstance, Send,
Reveal, Corrupt, Test

SIGN is EUF-CMA

d Messages @ Messages’

AKE-with-RFs

+ Newlnstance1, NewRF, SetupRF
[warning] : Setup-free RFs

KEM is RIND-CPA

> AKE-with-RFs security !

KDF is a PRF

20

Protocol proofs — Security preservation

Authenticating : restore authentication (lost if o not verified / pk collision)

Securing : restore key-secrecy (lost if weak pk)

E Messages Messages’ g
< > < > =

Oracles : Newlnstance1, Send, Reveal, Corrupt, Test,
SetupRF, SetCode

SIGN is EUF-CMA

KEM is RIND-CPA & RandIND > Authenticating & Securing !
KDF is a PRF

21

Protocol security — Other notions

d‘ Messages =)

> - —
-— 2

Prog 1

D Messages @ Messages’

SIGN is EUF-CMA

d Messages @ Messages’

— D :Messages: :Messages:
—
A

Prog 2

Obliviousness & Exf-res !

KEM is RandIND

(o,

22

Conclusion

Conclusion

1 V] 2 v
Setup-free RFs, relaxations, PQ-TLS RF for Verify and
compromise scenario Keygen
3 V 4 v
Rerandomizable KEM Cryptoverif proofs

24

Thank you for your attention !

Questions ?

C I‘yptove r|f p ro Qfs AKE-with-RFs (setup-free), authenticating, securing, obliviousness

Usual IND-CPA Authenticating + securing
Opk() : Opk() : Ideas :
Return honest pk[i] || Return honest pk{i] Fuse client + RF
OE(pk) : OE (pk) : Signature = RF signature
Return Encaps(pk) || pk honest: return (ct, rand K) PK = « given by adversary »
otherwise : return Encaps(pk)

Obliviousness
RIND-CPA
Ideas :

Oracles: Equivalence between C and C+RF fused
Oracle 1 : Opk([i]() -> pk

Oracle 2 : OE[ie](pk) -> ct
Oracle 3 : OS[ie,is](pk, seed) -> K

OS : check rand(pk, seed) = OEJ[ie].pk

Ideas: .
Can’tsend Kin OE : seed is unknown !

No malicious server — exf-res and obliviousness

GET/HTTP/1.1
Host: www.nsa.gov

User-Agent: ... Colluding

NSA server
—

GET/HTTP/1.1 l

Host: www.nsa.gov

User-agent: ... skli]

Double-layer encryption trick

How it works
One key case

D ~Messages @ Messages™
}
K

Pkrp, Skrp

$

K

~—({(l

A%, ce
Two key case ,C°).

D ~Messages @ ‘Messages™
1 1

K1,K2 K2 K1,K2

B,D

— (0

	Diapositive 1
	Diapositive 2
	Diapositive 3
	Diapositive 4
	Diapositive 5
	Diapositive 6
	Diapositive 7
	Diapositive 8
	Diapositive 9
	Diapositive 10
	Diapositive 11
	Diapositive 12
	Diapositive 13
	Diapositive 14
	Diapositive 15
	Diapositive 16
	Diapositive 17
	Diapositive 18
	Diapositive 19
	Diapositive 20
	Diapositive 21
	Diapositive 22
	Diapositive 23
	Diapositive 24
	Diapositive 25
	Diapositive 26
	Diapositive 27
	Diapositive 28
	Diapositive 29

