
Subversion-resilient Key-exchange in the Post-

quantum World (PQ-SRAKE)

10 / 14 / 2025

Kevin DUVERGER, Pierre-Alain FOUQUE, Charlie JACOMME, 

Guilhem NIOT, Cristina ONETE

ACM CCS 2025 – Taipei, Taïwan 



Introduction



3

Introduction – Subversions

NSA

Alice

𝑠𝑘
!

Internet

𝑚1, 𝑚2, … , 𝑚𝑘
NSA

𝑚𝑖

𝑠𝑘NSA

𝑠𝑘

REAL ATTACKS ! Dual EC (2013), XZ Utils (2024), …

! ! ! !
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Introduction – Reverse firewalls

Ilya Mironov and Noah Stephens-Davidowitz - 2014 : 

Reverse firewalls (RFs)

Alice

𝑠𝑘
!

Internet

𝑚1, 𝑚2, … , 𝑚𝑘

! ! !

RFAlice

𝑠𝑘
! 𝑚1, 𝑚2, … , 𝑚𝑘

! ! !

𝑚𝑖
′ = 𝑅𝑒𝑟𝑎𝑛𝑑𝑜𝑚𝑖𝑧𝑒(𝑚𝑖 , 𝑟)

Internet

𝑚1
′ , 𝑚2

′ , … , 𝑚𝑘
′



Security = 

5

Introduction – Reverse firewalls

𝑠𝑘
𝑚1, … , 𝑚𝑘

Security = 

𝑠𝑘
𝑚1, … , 𝑚𝑘 𝑚1

′ , … , 𝑚𝑘
′

𝑠𝑘
𝑚1, … , 𝑚𝑘

✘

𝑠𝑘
𝑚1, … , 𝑚𝑘 𝑚1

′ , … , 𝑚𝑘
′! !

𝑠𝑘
𝑚1, … , 𝑚𝑘! …

𝑠𝑘
𝑚1, … , 𝑚𝑘! …

𝓐Program 1 Program 2

Security = 

Security = 
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Introduction – Our goals

➢ Bossuat et al. 2020. Designing Reverse Firewalls for the Real World

Signed DH secure (client-side) against subversion attacks

Questions

Efficiency + deployability PQ-TLS RF

New primitives Formal verification

1 2

3 4

Final goal : a protocol such that a router / vpn (that we don’t trust) 

can heal the key-exchange



Real world RFs
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Real world RFs – Setup-freeness

RFAlice Server

Bossuat et al. 2020 – Designing Reverse Firewalls for the Real World

𝑝𝑘𝑆, 𝑝𝑘𝑅𝐹 𝑝𝑘𝑆, 𝑝𝑘𝑅𝐹 , 𝑠𝑘𝑅𝐹 𝑝𝑘𝑆, 𝑠𝑘𝑆

Shared parameters: complicated setup !

Setup-free RF – A RF that shares no long-term parameters with its party
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Real world RFs – Relaxing security notions

𝑠𝑘
𝑚1, … , 𝑚𝑘! …

𝑠𝑘
𝑚1, … , 𝑚𝑘! …

𝓐Program 1 Program 2

Exfiltration-resilience is too strong !

Security = 

𝑠𝑘
𝑚1, … , 𝑚𝑘

✘

𝑠𝑘
𝑚1, … , 𝑚𝑘 𝑚1

′ , … , 𝑚𝑘
′! !

Security = 

Security preservation = main target !



10

Real world RFs – Compromise scenario

All algorithms subverted: too strong in some cases

Might have trust in some algorithms !

Compromise scenario C – Set of algorithms that can be subverted

!

𝑚1, 𝑚2, 𝑚3, 𝑚4

Inefficient ! Better !

! !

𝑚1
′ , 𝑚2

′ , 𝑚3
′ , 𝑚4

′

=
 𝑚1, 𝑚2, 𝑚3, 𝑚4

!

𝑚1, 𝑚2, 𝑚3, 𝑚4

! !

𝑚1
′ , 𝑚2

′ , 𝑚3
′ , 𝑚4

′

=
𝑚1,  (𝑚2 , 𝑚3), 𝑚4



Target protocol
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Target protocol – The protocol

𝑝𝑘𝑆 𝑝𝑘𝑆, 𝑠𝑘𝑆

𝑘 ← KDF(𝐾)

𝑝𝑘, 𝑠𝑘 ←$ KeyGen 1𝜆

𝑐𝑡, 𝐾 ←$ Encaps 𝑝𝑘

𝜎 ←$ Sign(𝑠𝑘𝑆, 𝑝𝑘||𝑐𝑡)

𝑝𝑘

𝑐𝑡, 𝜎

Verify(𝑝𝑘𝑆, 𝜎, 𝑝𝑘||𝑐𝑡)
𝐾 ← Decaps(𝑠𝑘, 𝑐𝑡)
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Target protocol – Protections

Target RF action

Verify Reverify the signature

KeyGen Rerandomize the public key

Sign Rerandomize the signature

Decaps, KDF Double-layered encryption

Encaps Very complicated

𝑝𝑘𝑆 𝑝𝑘𝑆, 𝑠𝑘𝑆

𝑘 ← KDF(𝐾)

𝑝𝑘, 𝑠𝑘 ←$ KeyGen 1𝜆

𝑐𝑡, 𝐾 ←$ Encaps 𝑝𝑘

𝜎 ←$ Sign(𝑠𝑘𝑆, 𝑝𝑘||𝑐𝑡)

𝑝𝑘

𝑐𝑡, 𝜎

Verify(𝑝𝑘𝑆, 𝜎, 𝑝𝑘||𝑐𝑡)
𝐾 ← Decaps(𝑠𝑘, 𝑐𝑡)
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Target protocol – The protected protocol

Verify(𝑝𝑘𝑆, 𝜎, 𝑝𝑘′′||𝑐𝑡)

𝐾 ← Decaps(𝑠𝑘, 𝑐𝑡, 𝑠𝑓)

𝑝𝑘

𝑐𝑡, 𝜎, 𝑠𝐹 ← Combine(𝑠𝑅𝐹 , 𝑠𝑅)

𝑝𝑘, 𝑠𝑘 ←$ KeyGen(1𝜆)

𝑐𝑡, 𝐾 ←$ Encaps(𝑝𝑘′′)
𝜎 ←$ Sign(𝑠𝑘𝑆, 𝑝𝑘′′||𝑐𝑡)

𝑐𝑡, 𝜎, 𝑠𝑅

𝑝𝑘′ ← Rand(𝑝𝑘, sRF)

𝑝𝑘′′ ← Rand(𝑝𝑘′, s𝑅)

𝑝𝑘′′ ← Rand(𝑝𝑘′, 𝑠𝑅)
Verify(𝑝𝑘𝑆, 𝜎, 𝑝𝑘′′||𝑐𝑡)

𝑝𝑘′′ ← Rand(𝑝𝑘, s𝐹)

Compromise scenario = {KeyGen, Verify}

𝑝𝑘𝑆 𝑝𝑘𝑆, 𝑠𝑘𝑆

𝑠𝑅𝐹 ←$ Seed

𝑝𝑘𝑆

𝑠𝑅 ←$ Seed

𝑘 ← KDF(𝐾) and MACs



A new primitive
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New primitive – Definitions

RIND-CPA

𝑝𝑘, 𝑠𝑘 ←$ KeyGen 1𝜆

𝑝𝑘′ ← 𝒜(𝑝𝑘)

𝑐𝑡, 𝐾0 ←$  Encaps 𝑝𝑘′

𝐾1 ←$ 𝒦

𝑏 ←$ 0,1
𝑑, 𝑠𝑒𝑒𝑑 ← 𝒜(𝑐𝑡, 𝐾𝑏)

𝒜 wins iff 𝑏 = 𝑑 and 

Rand 𝑝𝑘, 𝑠𝑒𝑒𝑑 = 𝑝𝑘′

𝑝𝑘𝐴 ← 𝒜()

 𝑠 ←$ Seed
return Rand(𝑝𝑘𝐴, 𝑠)

return KeyGen 1𝜆

RandIND

RKEM

𝑝𝑘, 𝑠𝑘 ←$ KeyGen 1𝜆

𝑝k′ ← Rand 𝑝𝑘, 𝑠𝑒𝑒𝑑

𝑐𝑡, 𝐾 ←$  Encaps 𝑝𝑘

𝑠′ ← Combine 𝑠1, 𝑠2

𝐾 ← Decaps(𝑠𝑘, 𝑐𝑡, 𝑠)
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New primitive – A DH instantiation

KeyGen 1𝜆  :

𝑥 ←$ 𝔽𝑝

𝒑𝒌, 𝒔𝒌 ← (𝒈𝒙, 𝒙)

Encaps 𝑝𝑘  :

𝑦 ←$ 𝔽𝑝

𝒄𝒕, 𝑲 ← 𝒈𝒚, 𝑯 𝒑𝒌𝒚

Decaps 𝑠𝑘, 𝑐𝑡, 𝑠𝑒𝑒𝑑  :

𝑲 ← 𝑯 𝒄𝒕𝒔𝒌×𝒔𝒆𝒆𝒅

Rand 𝑝𝑘, 𝑠𝑒𝑒𝑑  :

𝒑𝒌′ ← (𝒑𝒌𝒔𝒆𝒆𝒅)
Combine 𝑠1, 𝑠2  :

𝒔′ ← (𝒔𝟏 × 𝒔𝟐)

Check that 𝑠𝑒𝑒𝑑 ≠ 0 and 𝑠𝑒𝑒𝑑 ≠ 1
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New primitive – A post-quantum instantiation

KeyGen 1𝜆  :

𝑠, 𝑒 ←$ 𝜒𝑠
2𝑘

𝒑𝒌, 𝒔𝒌 ← 𝑨𝒔 + 𝒆, 𝒔, 𝒆

Encaps 𝑝𝑘  :

𝜇 ←$ 0,1 ∗

𝑢, 𝑣 ← Kyber. Enc(𝑝𝑘, 𝜇)

𝒄𝒕, 𝑲 ← 𝒖, 𝒗 , 𝑯 𝝁

Decaps 𝑠, 𝑒 , 𝑢, 𝑣 , 𝑠∗, 𝑒∗  :

𝜇 ← Kyber. Dec 𝑠 + 𝑠∗, 𝑢, 𝑣

𝑲 ← 𝑯 𝝁

Rand 𝑝𝑘, 𝑠𝑒𝑒𝑑 = 𝑠∗, 𝑒∗  :

𝑝𝑘∗ ← 𝐴𝑠∗ + 𝑒∗

𝒑𝒌′ ← (𝒑𝒌 + 𝒑𝒌∗)

Combine 𝑠1, 𝑒1 , 𝑠2, 𝑒2  :

𝒔′, 𝒆′ ← (𝒔𝟏 + 𝒔𝟐, 𝒆𝟏 + 𝒆𝟐)

* Check that 𝑠𝑒𝑒𝑑 is not too big



Proofs (pen-and-paper + cryptoverif)
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Protocol proofs – Bad RF case

Oracles : NewInstance, Send, 

Reveal, Corrupt, Test

+ NewInstance1, NewRF, SetupRF

[warning] : Setup-free RFs

KEM is RIND-CPA

SIGN is EUF-CMA

AKE-with-RFs security !

Messages

Usual AKE-security

Messages Messages’

AKE-with-RFs

KDF is a PRF
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Protocol proofs – Security preservation

Authenticating : restore authentication (lost if 𝜎 not verified / 𝑝𝑘 collision)

Securing : restore key-secrecy (lost if weak 𝑝𝑘)

KEM is RIND-CPA & RandIND

SIGN is EUF-CMA

Authenticating & Securing !

Oracles : NewInstance1, Send, Reveal, Corrupt, Test, 

SetupRF, SetCode 

KDF is a PRF

! Messages Messages’



Messages
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Protocol security – Other notions

Messages Messages’Messages

𝓐

Messages’

Prog 1

! Messages Messages’

Prog 2

!

𝓐

KEM is RandIND

SIGN is EUF-CMA
Obliviousness & Exf-res !



Conclusion
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Conclusion

Setup-free RFs, relaxations, 

compromise scenario

PQ-TLS RF for Verify and 

Keygen

Rerandomizable KEM Cryptoverif proofs

1 2

3 4



Thank you for your attention !

Questions ?





CryptoVerif proofs

Usual IND-CPA

𝑶𝒑𝒌()  ∶
Return honest pk[i]
𝑶𝑬(𝒑𝒌)  ∶
Return Encaps(pk)

𝑶𝒑𝒌()  ∶
Return honest pk[i]
𝑶𝑬(𝒑𝒌)  ∶
pk honest : return (ct, rand K)
otherwise : return Encaps(pk)

RIND-CPA

AKE-with-RFs (setup-free), authenticating, securing, obliviousness

Oracles :
Oracle 1 : Opk[i]() -> pk

Oracle 2 : OE[ie](pk) -> ct
Oracle 3 : OS[ie,is](pk, seed) -> K

Ideas :
Can’t send K in OE : seed is unknown !
OS : check rand(pk, seed) = OE[ie].pk

Authenticating + securing

Ideas :
Fuse client + RF

Signature = RF signature
PK = « given by adversary »

Obliviousness

Ideas :
Equivalence between C and C+RF fused



No malicious server – exf-res and obliviousness

!
𝑠𝑘

GET / HTTP/1.1

Host: www.nsa.gov

User-Agent: …

…

GET / HTTP/1.1

Host: www.nsa.gov

User-agent: …

…

Colluding

NSA server

✘

𝑠𝑘 𝑖



𝐴𝑎′
, 𝐶𝑐′

, …

𝐴 = 𝑔𝑎 , 𝐶 = 𝑔𝑐

𝐸𝑛𝑐 𝑝𝑘𝑅𝐹 , 𝑐 

Double-layer encryption trick

Messages Messages’

One key case

K K K

Messages Messages’

Two key case

K1,K2 K2 K1,K2

How it works

𝑝𝑘𝑅𝐹 , 𝑠𝑘𝑅𝐹

𝐵, 𝐷

𝐵′ = 𝐵𝑎′
, 𝐷′ = 𝐷𝑐′

𝐾1 = 𝑔𝑎𝑎′𝑏 , 𝐾2 = 𝑔𝑐𝑐′𝑑
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