
Subversion-resilient Key-exchange in the Post-

quantum World (PQ-SRAKE)

10 / 14 / 2025

Kevin DUVERGER, Pierre-Alain FOUQUE, Charlie JACOMME,

Guilhem NIOT, Cristina ONETE

ACM CCS 2025 – Taipei, Taïwan

Introduction

3

Introduction – Subversions

NSA

Alice

𝑠𝑘
!

Internet

𝑚1, 𝑚2, … , 𝑚𝑘
NSA

𝑚𝑖

𝑠𝑘NSA

𝑠𝑘

REAL ATTACKS ! Dual EC (2013), XZ Utils (2024), …

! ! ! !

4

Introduction – Reverse firewalls

Ilya Mironov and Noah Stephens-Davidowitz - 2014 :

Reverse firewalls (RFs)

Alice

𝑠𝑘
!

Internet

𝑚1, 𝑚2, … , 𝑚𝑘

! ! !

RFAlice

𝑠𝑘
! 𝑚1, 𝑚2, … , 𝑚𝑘

! ! !

𝑚𝑖
′ = 𝑅𝑒𝑟𝑎𝑛𝑑𝑜𝑚𝑖𝑧𝑒(𝑚𝑖 , 𝑟)

Internet

𝑚1
′ , 𝑚2

′ , … , 𝑚𝑘
′

Security =

5

Introduction – Reverse firewalls

𝑠𝑘
𝑚1, … , 𝑚𝑘

Security =

𝑠𝑘
𝑚1, … , 𝑚𝑘 𝑚1

′ , … , 𝑚𝑘
′

𝑠𝑘
𝑚1, … , 𝑚𝑘

✘

𝑠𝑘
𝑚1, … , 𝑚𝑘 𝑚1

′ , … , 𝑚𝑘
′! !

𝑠𝑘
𝑚1, … , 𝑚𝑘! …

𝑠𝑘
𝑚1, … , 𝑚𝑘! …

𝓐Program 1 Program 2

Security =

Security =

6

Introduction – Our goals

➢ Bossuat et al. 2020. Designing Reverse Firewalls for the Real World

Signed DH secure (client-side) against subversion attacks

Questions

Efficiency + deployability PQ-TLS RF

New primitives Formal verification

1 2

3 4

Final goal : a protocol such that a router / vpn (that we don’t trust)

can heal the key-exchange

Real world RFs

8

Real world RFs – Setup-freeness

RFAlice Server

Bossuat et al. 2020 – Designing Reverse Firewalls for the Real World

𝑝𝑘𝑆, 𝑝𝑘𝑅𝐹 𝑝𝑘𝑆, 𝑝𝑘𝑅𝐹 , 𝑠𝑘𝑅𝐹 𝑝𝑘𝑆, 𝑠𝑘𝑆

Shared parameters: complicated setup !

Setup-free RF – A RF that shares no long-term parameters with its party

9

Real world RFs – Relaxing security notions

𝑠𝑘
𝑚1, … , 𝑚𝑘! …

𝑠𝑘
𝑚1, … , 𝑚𝑘! …

𝓐Program 1 Program 2

Exfiltration-resilience is too strong !

Security =

𝑠𝑘
𝑚1, … , 𝑚𝑘

✘

𝑠𝑘
𝑚1, … , 𝑚𝑘 𝑚1

′ , … , 𝑚𝑘
′! !

Security =

Security preservation = main target !

10

Real world RFs – Compromise scenario

All algorithms subverted: too strong in some cases

Might have trust in some algorithms !

Compromise scenario C – Set of algorithms that can be subverted

!

𝑚1, 𝑚2, 𝑚3, 𝑚4

Inefficient ! Better !

! !

𝑚1
′ , 𝑚2

′ , 𝑚3
′ , 𝑚4

′

=
 𝑚1, 𝑚2, 𝑚3, 𝑚4

!

𝑚1, 𝑚2, 𝑚3, 𝑚4

! !

𝑚1
′ , 𝑚2

′ , 𝑚3
′ , 𝑚4

′

=
𝑚1, (𝑚2 , 𝑚3), 𝑚4

Target protocol

12

Target protocol – The protocol

𝑝𝑘𝑆 𝑝𝑘𝑆, 𝑠𝑘𝑆

𝑘 ← KDF(𝐾)

𝑝𝑘, 𝑠𝑘 ←$ KeyGen 1𝜆

𝑐𝑡, 𝐾 ←$ Encaps 𝑝𝑘

𝜎 ←$ Sign(𝑠𝑘𝑆, 𝑝𝑘||𝑐𝑡)

𝑝𝑘

𝑐𝑡, 𝜎

Verify(𝑝𝑘𝑆, 𝜎, 𝑝𝑘||𝑐𝑡)
𝐾 ← Decaps(𝑠𝑘, 𝑐𝑡)

13

Target protocol – Protections

Target RF action

Verify Reverify the signature

KeyGen Rerandomize the public key

Sign Rerandomize the signature

Decaps, KDF Double-layered encryption

Encaps Very complicated

𝑝𝑘𝑆 𝑝𝑘𝑆, 𝑠𝑘𝑆

𝑘 ← KDF(𝐾)

𝑝𝑘, 𝑠𝑘 ←$ KeyGen 1𝜆

𝑐𝑡, 𝐾 ←$ Encaps 𝑝𝑘

𝜎 ←$ Sign(𝑠𝑘𝑆, 𝑝𝑘||𝑐𝑡)

𝑝𝑘

𝑐𝑡, 𝜎

Verify(𝑝𝑘𝑆, 𝜎, 𝑝𝑘||𝑐𝑡)
𝐾 ← Decaps(𝑠𝑘, 𝑐𝑡)

14

Target protocol – The protected protocol

Verify(𝑝𝑘𝑆, 𝜎, 𝑝𝑘′′||𝑐𝑡)

𝐾 ← Decaps(𝑠𝑘, 𝑐𝑡, 𝑠𝑓)

𝑝𝑘

𝑐𝑡, 𝜎, 𝑠𝐹 ← Combine(𝑠𝑅𝐹 , 𝑠𝑅)

𝑝𝑘, 𝑠𝑘 ←$ KeyGen(1𝜆)

𝑐𝑡, 𝐾 ←$ Encaps(𝑝𝑘′′)
𝜎 ←$ Sign(𝑠𝑘𝑆, 𝑝𝑘′′||𝑐𝑡)

𝑐𝑡, 𝜎, 𝑠𝑅

𝑝𝑘′ ← Rand(𝑝𝑘, sRF)

𝑝𝑘′′ ← Rand(𝑝𝑘′, s𝑅)

𝑝𝑘′′ ← Rand(𝑝𝑘′, 𝑠𝑅)
Verify(𝑝𝑘𝑆, 𝜎, 𝑝𝑘′′||𝑐𝑡)

𝑝𝑘′′ ← Rand(𝑝𝑘, s𝐹)

Compromise scenario = {KeyGen, Verify}

𝑝𝑘𝑆 𝑝𝑘𝑆, 𝑠𝑘𝑆

𝑠𝑅𝐹 ←$ Seed

𝑝𝑘𝑆

𝑠𝑅 ←$ Seed

𝑘 ← KDF(𝐾) and MACs

A new primitive

16

New primitive – Definitions

RIND-CPA

𝑝𝑘, 𝑠𝑘 ←$ KeyGen 1𝜆

𝑝𝑘′ ← 𝒜(𝑝𝑘)

𝑐𝑡, 𝐾0 ←$ Encaps 𝑝𝑘′

𝐾1 ←$ 𝒦

𝑏 ←$ 0,1
𝑑, 𝑠𝑒𝑒𝑑 ← 𝒜(𝑐𝑡, 𝐾𝑏)

𝒜 wins iff 𝑏 = 𝑑 and

Rand 𝑝𝑘, 𝑠𝑒𝑒𝑑 = 𝑝𝑘′

𝑝𝑘𝐴 ← 𝒜()

 𝑠 ←$ Seed
return Rand(𝑝𝑘𝐴, 𝑠)

return KeyGen 1𝜆

RandIND

RKEM

𝑝𝑘, 𝑠𝑘 ←$ KeyGen 1𝜆

𝑝k′ ← Rand 𝑝𝑘, 𝑠𝑒𝑒𝑑

𝑐𝑡, 𝐾 ←$ Encaps 𝑝𝑘

𝑠′ ← Combine 𝑠1, 𝑠2

𝐾 ← Decaps(𝑠𝑘, 𝑐𝑡, 𝑠)

17

New primitive – A DH instantiation

KeyGen 1𝜆 :

𝑥 ←$ 𝔽𝑝

𝒑𝒌, 𝒔𝒌 ← (𝒈𝒙, 𝒙)

Encaps 𝑝𝑘 :

𝑦 ←$ 𝔽𝑝

𝒄𝒕, 𝑲 ← 𝒈𝒚, 𝑯 𝒑𝒌𝒚

Decaps 𝑠𝑘, 𝑐𝑡, 𝑠𝑒𝑒𝑑 :

𝑲 ← 𝑯 𝒄𝒕𝒔𝒌×𝒔𝒆𝒆𝒅

Rand 𝑝𝑘, 𝑠𝑒𝑒𝑑 :

𝒑𝒌′ ← (𝒑𝒌𝒔𝒆𝒆𝒅)
Combine 𝑠1, 𝑠2 :

𝒔′ ← (𝒔𝟏 × 𝒔𝟐)

Check that 𝑠𝑒𝑒𝑑 ≠ 0 and 𝑠𝑒𝑒𝑑 ≠ 1

18

New primitive – A post-quantum instantiation

KeyGen 1𝜆 :

𝑠, 𝑒 ←$ 𝜒𝑠
2𝑘

𝒑𝒌, 𝒔𝒌 ← 𝑨𝒔 + 𝒆, 𝒔, 𝒆

Encaps 𝑝𝑘 :

𝜇 ←$ 0,1 ∗

𝑢, 𝑣 ← Kyber. Enc(𝑝𝑘, 𝜇)

𝒄𝒕, 𝑲 ← 𝒖, 𝒗 , 𝑯 𝝁

Decaps 𝑠, 𝑒 , 𝑢, 𝑣 , 𝑠∗, 𝑒∗ :

𝜇 ← Kyber. Dec 𝑠 + 𝑠∗, 𝑢, 𝑣

𝑲 ← 𝑯 𝝁

Rand 𝑝𝑘, 𝑠𝑒𝑒𝑑 = 𝑠∗, 𝑒∗ :

𝑝𝑘∗ ← 𝐴𝑠∗ + 𝑒∗

𝒑𝒌′ ← (𝒑𝒌 + 𝒑𝒌∗)

Combine 𝑠1, 𝑒1 , 𝑠2, 𝑒2 :

𝒔′, 𝒆′ ← (𝒔𝟏 + 𝒔𝟐, 𝒆𝟏 + 𝒆𝟐)

* Check that 𝑠𝑒𝑒𝑑 is not too big

Proofs (pen-and-paper + cryptoverif)

20

Protocol proofs – Bad RF case

Oracles : NewInstance, Send,

Reveal, Corrupt, Test

+ NewInstance1, NewRF, SetupRF

[warning] : Setup-free RFs

KEM is RIND-CPA

SIGN is EUF-CMA

AKE-with-RFs security !

Messages

Usual AKE-security

Messages Messages’

AKE-with-RFs

KDF is a PRF

21

Protocol proofs – Security preservation

Authenticating : restore authentication (lost if 𝜎 not verified / 𝑝𝑘 collision)

Securing : restore key-secrecy (lost if weak 𝑝𝑘)

KEM is RIND-CPA & RandIND

SIGN is EUF-CMA

Authenticating & Securing !

Oracles : NewInstance1, Send, Reveal, Corrupt, Test,

SetupRF, SetCode

KDF is a PRF

! Messages Messages’

Messages

22

Protocol security – Other notions

Messages Messages’Messages

𝓐

Messages’

Prog 1

! Messages Messages’

Prog 2

!

𝓐

KEM is RandIND

SIGN is EUF-CMA
Obliviousness & Exf-res !

Conclusion

24

Conclusion

Setup-free RFs, relaxations,

compromise scenario

PQ-TLS RF for Verify and

Keygen

Rerandomizable KEM Cryptoverif proofs

1 2

3 4

Thank you for your attention !

Questions ?

CryptoVerif proofs

Usual IND-CPA

𝑶𝒑𝒌() ∶
Return honest pk[i]
𝑶𝑬(𝒑𝒌) ∶
Return Encaps(pk)

𝑶𝒑𝒌() ∶
Return honest pk[i]
𝑶𝑬(𝒑𝒌) ∶
pk honest : return (ct, rand K)
otherwise : return Encaps(pk)

RIND-CPA

AKE-with-RFs (setup-free), authenticating, securing, obliviousness

Oracles :
Oracle 1 : Opk[i]() -> pk

Oracle 2 : OE[ie](pk) -> ct
Oracle 3 : OS[ie,is](pk, seed) -> K

Ideas :
Can’t send K in OE : seed is unknown !
OS : check rand(pk, seed) = OE[ie].pk

Authenticating + securing

Ideas :
Fuse client + RF

Signature = RF signature
PK = « given by adversary »

Obliviousness

Ideas :
Equivalence between C and C+RF fused

No malicious server – exf-res and obliviousness

!
𝑠𝑘

GET / HTTP/1.1

Host: www.nsa.gov

User-Agent: …

…

GET / HTTP/1.1

Host: www.nsa.gov

User-agent: …

…

Colluding

NSA server

✘

𝑠𝑘 𝑖

𝐴𝑎′
, 𝐶𝑐′

, …

𝐴 = 𝑔𝑎 , 𝐶 = 𝑔𝑐

𝐸𝑛𝑐 𝑝𝑘𝑅𝐹 , 𝑐

Double-layer encryption trick

Messages Messages’

One key case

K K K

Messages Messages’

Two key case

K1,K2 K2 K1,K2

How it works

𝑝𝑘𝑅𝐹 , 𝑠𝑘𝑅𝐹

𝐵, 𝐷

𝐵′ = 𝐵𝑎′
, 𝐷′ = 𝐷𝑐′

𝐾1 = 𝑔𝑎𝑎′𝑏 , 𝐾2 = 𝑔𝑐𝑐′𝑑

	Diapositive 1
	Diapositive 2
	Diapositive 3
	Diapositive 4
	Diapositive 5
	Diapositive 6
	Diapositive 7
	Diapositive 8
	Diapositive 9
	Diapositive 10
	Diapositive 11
	Diapositive 12
	Diapositive 13
	Diapositive 14
	Diapositive 15
	Diapositive 16
	Diapositive 17
	Diapositive 18
	Diapositive 19
	Diapositive 20
	Diapositive 21
	Diapositive 22
	Diapositive 23
	Diapositive 24
	Diapositive 25
	Diapositive 26
	Diapositive 27
	Diapositive 28
	Diapositive 29

